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ABSTRACT 

CAR DRIVERS AND FUEL SOURCES: HOW DISTINCT SIGNALING 

DOMAINS IN CHIMERIC ANTIGEN RECEPTORS REPROGRAM T 

CELLS 

Omkar Uday Kawalekar 

Carl H. June 

With breakthroughs in synthetic biology, improved cell culture techniques and advanced 

genetic engineering, it has now become possible to generate bi-specific primary human T 

cells with desired specificities. One mode of redirecting specificity is the modification of 

T cells to express chimeric antigen receptors (CARs). Recent studies indicate that natural 

T cells have distinct biochemical and metabolic features that endow them with short lived 

effector or long lived memory fates. The central objective of this thesis was to investigate 

whether the signaling endodomain of CARs could reprogram T cells with pre-specified 

effector and memory fates. This thesis describes a novel technique that allows for 

detailed investigation of the impact of CAR design on the fate of T cells. Specifically, it 

compares the short-term and long-term signaling effects of CD28 and 4-1BB 

costimulatory domains in the CAR architecture. These two signaling domains have been 

most extensively employed in CAR therapy trials against a wide variety of malignancies. 

Incorporation of 4-1BB signaling domain imparts superior proliferative and survival 

benefits as compared to the CD28-containing CAR T cells. This increased persistence 

correlates with clinical observations. 4-1BB CARs T cells show an enrichment of central 

memory phenotype along with relative increase in fatty acid based metabolism. This is 
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accompanied by a relative increase in mitochondrial mass, upregulation of key metabolic 

enzymes and increased spare respiratory capacity. Furthermore, stimulation of CD28-

containing CARs promotes rapid induction of biochemical signaling events that are 

associated with T cell activation. Specifically, the phosphorylation of key proximal and 

distal signaling proteins between the two CAR models have been compared. Inclusion of 

CD28 domain in the CAR structure dramatically reduces activation threshold and leads to 

increased and sustained calcium flux. Taken together, this thesis work uncovers some key 

differences triggered by the different costimulatory domains. This thesis establishes that 

the choice of CAR signaling domain can be used to dictate the fate of engineered T cells. 

Moving forward, the ability of CARs to reprogram T cell metabolism and induce 

differential activation patterns will need to be considered when designing future CAR 

trials. 
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Chapter 1 

INTRODUCTION 

Cancer and the Immune system 

Cancer – a single word that represents over 200 diseases, manifests as an 

uncontrolled proliferation of cells with the potential to invade, disrupt bodily processes 

and destroy tissues. Despite its pervasiveness, each form of the disease shares several 

common characteristics. The complex interplay of six biological capabilities has been 

described as the logical framework based on which cancer develops(Hanahan and 

Weinberg, 2000). These include sustained proliferative signaling, escaping growth 

suppressors, evading cell death, acquisition of replicative immortality, promotion of 

angiogenesis and metastasis. 

The mechanisms of cancer development have not yet been fully understood, but it 

has been shown that this is multistep process(Farber, 1984). Genomic instability, a basic 

hallmark of cancer underlies many of the phenotypic features attributed to almost all 

cancer cells(Negrini et al., 2010). The most common genetic alteration in cancer - 

mutation - arises from defects in DNA damage repair systems of the cancer cell. 

Mutations in the coding regions of genes promoting cell proliferation, “oncogenes” 

underlie the sustained proliferative rates of cancer cells.  

Cancer cells continue to grow, often unrecognized by the immune system; a 

phenomenon strikingly distinct from the immune response generated against 

microorganisms. The immune system, including the innate and the adaptive arms, is 

composed of cells, tissues and organs that monitor the host organism for foreign 
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molecules or aberrantly growing cells. Researchers have hypothesized that this process of 

immunosurveillance is only a part of the process that host immune system utilizes to 

constantly identify developing tumors. A theory termed as immunoediting evolved, 

which proposed a dynamic process that shapes the immunogenicity of tumors as they 

develop. Three steps, popularly referred to as the 3 Es of cancer immunoediting were 

proposed - elimination, equilibrium and escape(Dunn et al., 2004). Elimination refers to 

the successful rejection of evolving tumors by the host innate and adaptive arms of the 

immune system. However, if all the tumor cells are not eradicated, they may enter into 

the equilibrium phase where the tumor cells can enter a prolonged undisturbed dormant 

state. Ultimately, the tumor cells can escape this immune control and progress 

uncontrollably, leading to a full-fledged clinical progression of cancer. One form of 

immunoediting involves modulation of cancer-specific antigens. Cancer cells express 

normal self-antigens in addition to specific cancer-associated antigens. By rendering their 

cancer-specific antigens inaccessible or through genetic modifications leading to loss of 

these antigens, cancer cells evade/escape the cytolytic arm of the immune system, which 

is mainly comprised of lymphocytes. 

Lymphocytes are responsible for the specificity of the adaptive immune system. 

They play an important role in both natural and therapeutically induced immunoediting. 

T lymphocytes develop in the thymus and comprise the main cytolytic arm of the 

immune system to orchestrate cell-mediated responses against foreign insults to the body. 

However, due to various evasive strategies employed by tumor cells, T cells are often 

non-responsive to tumor cells(Mapara and Sykes, 2004). In some cases, the natural state 
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of endogenous tumor-reactive T lymphocytes is characterized by anergy, a phase of 

unresponsive quiescence. Various other mechanisms such as reduced immune 

recognition, increased resistance to attack and/or the development of an 

immunosuppressive tumor microenvironment often mediate tumor escape(Mapara and 

Sykes, 2004). In this manner, cancer cells induce tolerance. These hurdles coupled with 

other factors such as the non-conducive tumor microenvironment with limited oxygen 

availability and nutrient depletion, inhibitory chemical cytokines secreted by the cancer 

cells, make therapeutic interventions by the components of the immune system 

increasingly difficult. 

Recent work has identified additional features shared by cancer cells. Cross talk 

between oncogenic signaling pathways and metabolic pathways leads to an increased 

reliance on conventional and unconventional nutrient sources, specifically glucose and 

glutamine(Eagle, 1955; Som et al., 1980). Tumorigenesis-associated metabolic 

adaptations affect metabolic influx and an increased ability to acquire nutrients. These 

alterations also shape the way the nutrients are allocated to different pathways that 

contribute to tumorogenic properties. From a therapeutic perspective, such metabolic 

modifications exert long-ranging effects on the components of the tumor 

microenvironment. There, thus exists a fierce competition between cells in the tumor 

microenvironment, as the demand for resources in this niche can be very high(Hanahan 

and Coussens, 2012). Taken together, this reciprocal interaction between tumor targets 

and therapeutic agents has been the focus of thorough investigation in the recent years.  
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Thus far, the first line of treatment for cancer involves surgical resection, 

chemotherapy or radiation either alone or in combination. However, there are inherent 

limitations with these forms of treatment. They may damage healthy surrounding cells 

and may have little influence on metastasized tumor masses, thereby yielding 

unsatisfactory results. Another line of treatment has been the application of cancer 

vaccines. So far, there have been only two preventive cancer vaccines approved by the 

FDA against HPV that confer protection against cervical cancer in woman(Group, 2007; 

Paavonen et al., 2009); and one therapeutic vaccine called sipuleucel-T(Higano et al., 

2010), for use in men with metastatic prostate cancer. However, many of these 

approaches can affect normal cells and side effects can limit treatment options. A rapidly 

increasing knowledge base of the immune system and technology to allow genetic 

engineering and propagation of immune cells has motivated much interest in the 

development of anti-cancer immunological strategies. The status of the field and the 

prospects for clinical translation warranted the need for the development of targeted 

therapeutic interventions such that the normal tissues are left unharmed. One such 

advancement in the field of cancer therapeutics has been immunotherapy, which aims to 

fortify the body’s own immune system to target non-self agents.  

Cancer Immunotherapy 

Until a few decades ago, the possibility that the immune system could mount a 

response to and eradicate cancer was met with severe skepticism. However, scattered 

anecdotes and evidence of spontaneous tumor regression have been documented in 

certain patients before the turn of the last century. In 1891, William Coley administered 
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an attenuated form of streptococcus as an immune therapy to cancer patients. Similar case 

studies that followed lent support to the idea that an antitumor immune response showed 

therapeutic potential in some cancer patients. Some of the most promising evidence for 

the existence of an immune response against tumors was a series of clinical trials in the 

late 1980s using the cytokine interleukin IL-2(Atkins et al., 1999; Fyfe et al., 1995; Lotze 

and Rosenberg, 1986). These trials reported dramatic tumor regression in patients with 

metastatic melanoma and renal cell carcinoma. Interestingly, IL-2 alone has no cytotoxic 

capacity, but is a potent activator of an important arm of the immune system - cytotoxic T 

cells (CTLs). These results later convinced the US FDA to approve IL-2 as the first bona 

fide immunotherapy treatment for cancer. Since then, the tumoricidal capacity of the 

cytolytic weapons of the immune system has been widely explored and the field of cancer 

immunotherapy has undergone a surge of enthusiasm as an approach to fight cancer. 

One such strategy to harness and enhance the innate power and specificity of the 

immune system to target cancer is cancer immunotherapy. It represents a promising 

cancer treatment strategy since the evolution of the first chemotherapy in the late 

1940s(DeVita and Chu, 2008). Cancer immunotherapy broadly comes in two forms – 

active and passive. Active immunotherapy induces long-lasting tumor antigen-specific 

responses, which may be preventive or therapeutic. This can done using vaccinations or 

materials obtained from biopsies of the tumor(Giarelli, 2007). Such vaccines aim to 

prime a cancer patient’s immune system to control and/or eradicate the disease, much like 

conventional vaccines. Despite their efficacy in murine models, the clinical benefit of 

cancer vaccines in cancer patients has been modest, with Sipuleucel-T, a dendritic cell-
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based vaccine, and Gardasil and Cervarix against HPV, being the only FDA approved 

cancer vaccines to date(Kantoff et al., 2010). Additionally, the non-specific stimulation 

of the immune system involving administration of cytokines such as interleukin(Yang et 

al., 2003) and interferons can further enhance immune responses against tumors, posing 

as an advancement of the traditional active form of immunotherapy. 

Passive immunotherapy, on the other hand provides a tumor-specific immune 

response with the aid of effector molecules such as antibodies or effector cells. Antibody 

based therapy refers to the use of monoclonal antibodies that bind specifically to cancer 

cells and ultimately lead to the death of cancer cells(Mellstedt, 2003). One method is to 

block the growth factor molecules with their receptors using mAbs in order to prevent the 

growth of cancer cells. Another such death mechanism is to block key cancer specific cell 

receptors. The hypothesis for this treatment is that blocking immunosuppressive 

receptors, such as CTLA-4 and PD-1, would potentiate an antitumor response. The 

recently FDA-approved agent, ipilumimab, an antibody that blocks CTLA-4, among 

many others, exemplifies the success of this approach(Hodi et al., 2010). As 

acknowledged as the scientific breakthrough of 2014, recent studies highlight the 

therapeutic promise of checkpoint inhibitors in the particularly challenging solid tumor 

environment. 

More recently, the transfusion of lymphocytes as a therapeutic approach against 

cancer has come into the limelight. This strategy, called as Adoptive Cell Therapy (ACT) 

introduces another promising class of immunotherapy-based treatments against cancer 
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and certain viral infections. Encouraging data regarding clinical efficacy of ACT using T 

cell lymphocytes has spiked growing interest in this field. 

Adoptive T Cell Therapy 

The transfusion of T cells, a technique referred to as Adoptive T Cell Therapy 

involves the infusion of mature T cell subsets aimed to eliminate tumor and prevent 

regression (Figure 1.1). The basis for this idea stems from a study by Southam and 

colleagues(Southam et al., 1966). They observed regression in subcutaneous growth of 

tumor cells in almost half of the 41 patients evaluated, when mixed with the patient’s 

own leukocytes. This provided evidence that lymphocytes potentially had a detrimental 

effect on the growth of cancer cells. These findings coupled with the extended clonal 

expansion life span, inherently high specificity and the ability to genetically manipulate 

their targeting capability laid the groundwork for considering T cells as prime candidates 

for adoptive immunotherapy.  

Researchers took advantage of the plethora of cancer-specific antigens that have 

already been identified, to improve the targeting power of ACT. In one approach, 

autologous T cells were isolated from fresh patient biopsy samples and progressively 

expanded ex vivo to obtain a concentrated culture of antigen-specific T cells, known as 

tumor-infiltrating lymphocytes (TILs). These TILs were then adoptively transferred into 

the patient in the hope of selectively homing to and targeting tumor cells. However, the 

success of this technique has been restricted to melanoma patients(Dreno et al., 2002; 

Figlin et al., 1999; Rosenberg et al., 1994). MHC down regulation or the loss of tumor 

specific antigen could be possible reasons behind the limited efficacy. Although recent 



www.manaraa.com

 
 

8 

studies have shown improved responses to TIL therapy, the challenge of improving 

tumor targeting of adoptively transferred cells remains unresolved. This could be a major 

factor leading to the modest clinical benefit observed. Therefore, genetic modification of 

T cells was proposed to circumvent the issues plaguing anti-tumor efficacy in many 

cancer settings.  

Engineering T cells for gain-of-function as a cancer therapeutic has become an 

increasingly popular strategy in the field of synthetic biology to overcome the issue of 

tolerance, tumor targeting and engraftment of adoptively transferred T cells(Ho et al., 

2003). The feasibility of this approach has been shown in multiple studies where 

genetically modified T cells have been shown to persist for years in humans following 

adoptive transfer(Mitsuyasu et al., 2000; Scholler et al., 2012). Additionally, since most 

tumors are poorly antigenic and after heavy chemotherapy, T cells with desired 

specificities may not remain functional, the art of genetic engineering allows one to 

overcome these limitations. Two major approaches on introducing an antigen-specific 

receptor have been examined. One approach is to express natural αβ TCR heterodimers 

of known specificity and avidity for tumor antigens(Schumacher, 2002). This redirects 

the T cell to recognize cancer-specific intracellular antigens on tumor cells. However, this 

technique does not come without its drawbacks. It runs the potential risk of mispairing of 

transgenic αβ chains with endogenous TCR chains, thereby revealing novel receptors 

with unknown specificities. Another major consideration of this approach is the 

requirement for the antigen to be expressed on the tumor surface in context of the MHC-

complex. This is especially concerning because tumors often down-regulate MHC 
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molecules or surface peptides for evasion from immune surveillance. Among attempts to 

work around these issues, Eshhar and colleagues performed pioneering work to overcome 

these hurdles in the late 1980s(Gross et al., 1989). They engineered T cells to express an 

antibody-based artificial receptor, which is now known as a chimeric antigen receptor 

(CAR). 

Chimeric Antigen Receptors (CARs) 

In principle, a CAR is an engineered fusion molecule that combines any ligand-

binding domain with T cell signaling protein(s). These can be introduced into a T cell as 

cDNA to be expressed on the cell surface allowing them to recognize its cognate antigen 

of interest. This strategy allows redirection of the cells against suitable targets, while its 

endogenous (TCR mediated) specificity remains intact. These also permit MHC-

independent recognition of surface antigens. Although there have been numerous 

variations of CARs under investigation, the basic design remains fairly consistent 

consisting of a binding moiety, an extracellular hinge and spacer element, a 

transmembrane region and the intracellular signaling domains (Figure 1.2). 

 The binding moiety commonly consists of a single-chain fragment (scFv), 

comprising the light (VL) and heavy (VH) variable fragments of a tumor-associated 

antigen (TAA)-specific antibody, linked together by a flexible linker. Using a range of 

different scFvs with varying affinities and specificities to TAAs, CARs against numerous 

malignancies have been designed and tested(Sadelain et al., 2009). Connected to the scFv 

is a hinge region that links the scFv to the transmembrane domain embedded in the 

surface membrane of the T cell.  This hinge promotes flexibility and accessibility for the 
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binding moiety. In its simplest form, this structure is then connected intracellularly to 

known signaling units of the TCR complex such as CD3ζ or to Fc-gamma chain domains. 

These are referred to as the first generation of CARs(Eshhar et al., 1993; Kuwana et al., 

1987). Although these receptors could initiate antitumor cytotoxicity, the ability of such 

CAR-grafted cells to proliferate and persist was suboptimal(Eshhar et al., 1993; Kuwana 

et al., 1987; Wilkie et al., 2008). Following the two-signal hypothesis for complete 

activation of T cells, investigators thought to provide a costimulatory signaling domain in 

cis with the CD3ζ domains to give rise to the second generation of CARs. Various 

costimulatory domains including CD28(Finney et al., 1998; Maher et al., 2002), 4-

1BB(Carpenito et al., 2009; Imai et al., 2004; Milone et al., 2009), CD27(Song et al., 

2012), ICOS(Finney et al., 2004) and OX40(Hombach et al., 2012) have undergone 

thorough investigation in the preclinical settings. Combining two such costimulatory 

domains in cis with the CD3ζ domain led to the development of the third generation of 

CARs(Carpenito et al., 2009; Tammana et al., 2010; Zhong et al., 2010). Notably, 

inclusion of costimulatory domains has significantly improved the proliferative capacity, 

cytokine secretion, cytotoxic potential, and thus the overall effectiveness of CAR therapy 

in the clinics. Although almost all of these clinical trials have revealed that this strategy is 

feasible and safe, the outcomes of these trials have been largely distinct. The disparity is 

likely due to the different CARs developed by each investigatory center, each using 

different scFv’s for the same antigen, different methods of genetically modifying T cells, 

different culture system and conditioning regimen or different post-therapy interventions. 

Among all the possible combinations of CAR endo-domains, the second generation of 



www.manaraa.com

 
 

11 

CARs using either CD28 or 4-1BB signaling domains (hereon referred to as 28ζ or BBζ 

CARs) has undergone the most rigorous clinical investigation. Preclinical murine models 

using CARs directed against a leukemic cell line(Milone et al., 2009) or a CAR against a 

solid tumor line(Carpenito et al., 2009) showed the differential induction of tumor 

regression by 28ζ and BBζ CAR T cells. Importantly, there was a striking difference in 

the levels of persistence of T cells containing the BBζ CAR, as compared to the 28ζ 

CAR. Understanding the mechanistic differences in activation of T cells mediated by 

these two costimulatory domains continues to be an unaddressed challenge.  

CARs in the clinic 

Clinical use of redirected T cells with CARs has overcome many of the barriers 

that tumors employ to evade immune surveillance, including down-regulation of cancer-

specific peptides, down-regulation of major histocompatibility complex molecules and 

immunosuppressive factors that dampen T-cell signaling and function. At the time when 

this thesis project started, there were only a handful of clinical studies that were 

published (Table 1.1). These trials used only the first-generation CARs with modest 

activation, survival and cytolytic activity. To discuss the prospects of improving the 

effectiveness of CAR therapies, a committee of CAR experts, including principal 

investigators of several clinical trial centers, project officers from the National Heart, 

Lung and Blood Institute and the National Cancer Institute convened for a small 

workshop in May 2010 preceding the annual meeting of the American Society of Gene 

and Cell Therapy.  
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Following thorough discussions regarding the elements needed for a CAR trial 

against B-cell malignancies, these investigators revealed promising clinical data. By 

2011, there were several sites in the United States where patients were given infusions 

with T cells modified to express CARs against CD19 antigen (Table 1.2). CD19 presents 

itself as an excellent tumor-associated target for immunotherapy, as it is expressed at high 

levels on essentially all B-lineage cells, including B-cell leukemias and lymphomas. 

Importantly, CD19 is not expressed on hematopoietic stem cells or on other tissues, 

thereby significantly lowering the risks of on-target off-tumor toxicities. At the time, only 

one study performed with infusion of anti-CD19 CAR T cells reported a serious adverse 

event resulting in the patient death(Brentjens et al., 2010). However, it was concluded 

that the patient’s death was not directly caused by the cellular product, but was likely due 

to an inflammatory cascade of cytokines resulting from the lymphodepletion regimen that 

was administered prior to the infusion. The trial was thus reopened. 

The question still remained– which CAR design is the best, and is it context-

dependent i.e. blood-based versus solid tumor? The various components of the CAR 

architecture allowed for various permutations of CAR design. The dense grid of variables 

including choice of the monoclonal antibody from which the scFv was derived, type and 

length of extracellular hinge and the nature of the transmembrane domain, made the 

comparison of CAR structures very complicated. Each center’s proposal also differed in 

terms of which T cell population to employ: bulk peripheral blood mononuclear cells 

(PBMCs), CD8
+ 

(CD4-depleted PBMCs), PBMCs depleted of T-regulatory cells, central 

memory T cells (TCM) or EBV-specific T cells(Berger et al., 2008; Heslop et al., 2010; 
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June et al., 2009; Micklethwaite et al., 2010). A highly debated factor in determining the 

CAR design focused on the intracellular cytoplasmic domains, which, as discussed 

earlier, provide the appropriate signals to activate and define the fate of the infused 

cellular product. Since different centers, till date, have continued to use different 

signaling domains, it became imperative to understand how these domains operated at a 

molecular level. More specifically, the signaling cascades initiated by each domain in 

context of the CAR remain to be delineated. 

Outline of Thesis 

This thesis investigates the effects of using two different signaling domains in the 

CAR structure – 28ζ and BBζ, on the activation and survival of primary human T cells. 

Also described is the development of a novel in vitro technique used to assay the intricate 

differences in the activation signaling pathways of T cells as well as differences in 

calcium influx. The potential applications of this technique for ex vivo expansion and 

manipulation have also been discussed briefly. Most importantly, the effects of these two 

signaling domains on defining the metabolic fates and survival of CD8
+
 T cells have been 

investigated in great detail. These studies provide valuable insights to the growing body 

of knowledge about the influence of CAR signaling domains and how the appropriate 

choice and incorporation of these domains could be critical to the ultimate clinical 

success of CAR T therapies.
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Figure 1.1 Principles of Adoptive T Cell Therapy. 

This method of adoptive transfer of modified T cells involves (1) harvesting T cells from 

the patient by apheresis, followed by (2) activation and genetic modification by 

transgenesis. (3) The gene-modified cells are expanded with antibodies and/or cytokines 

and then (4) reinfused into the patient. The premise is that the engineered T cells can now 

traffic to and target the tumor. 
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Figure 1.2 Structure of a Chimeric Antigen Receptor. 

A CAR is a synthetic transmembrane protein designed to have desired specificity. The 

specificity is designated by an antigen recognition domain that comprises of the variable 

regions of the light and heavy chain molecules of an immunoglobulin (scFv). It is linked 

together to form a single polypeptide chain using a short-chain peptide linker. Through a 

hinge, the scFv is held up on the cell surface by a transmembrane domain. The latter is 

stitched known signaling domains on the TCR complex to form the 1
st
 generation CARs. 

Addition of co-stimulatory domains constitutes a 2
nd

 generation CAR.  
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Table 1.1 Clinical trials using CARs published until 2010 
 

Target Antigen Disease Reference 

CD20 Follicular lymphoma (Wang et al., 2004) 

CD20 NHL/mantle cell lymphoma (Till et al., 2008) 

CD171 Neuroblastoma (Park et al., 2007) 

Folate Receptor Ovarian cancer (Kershaw et al., 2006) 

GD2 Neuroblastoma (Pule et al., 2008) 

gp100 AIDS (Mitsuyasu et al., 2000) 

 

Table 1.1 Clinical trials published up until December 2010 using CARs for the treatment 

of specified diseases. All these trials used the first-generation of CARs. (NHL: Non-

Hodgkin’s Lymphoma; AIDS: Acquired Immunodeficiency Syndrome) 
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Table 1.2 Clinical trials using CAR-modified T cells against B-cell 

malignancies until June 2011 
 

Disease 
CAR signaling 

domain 
Center 

ClinicalTrials.gov 

NCT number 

Relapsed/refractory 

CLL 
4-1BB + CD3ζ  UPenn NCT01029366 

Relapsed/refractory 

ALL 
4-1BB + CD3ζ  UPenn NCT01626495 

B NHL and CLL CD28 + CD3ζ  BCM NCT00586391 

B NHL and CLL 
CD28 + CD3ζ vs 

EBV + CD3ζ  
BCM NCT00608270 

B ALL, S/P HSCT CD28 + CD3ζ  BCM NCT00709033 

Lymphoma, CLL CD28 + CD3ζ  NCI NCT00924326 

B-NHL, S/P 

autologous HSCT 
CD28 + CD3ζ  MDACC NCT00968760 

Relapsed/refractory 

F-NHL 
CD3ζ  COH NCT00182650 

CLL-refractory CD28 + CD3ζ  MSKCC NCT00466531 

B ALL-relapsed CD28 + CD3ζ  MSKCC NCT01044069 

 

Table 1.2 Clinical trials using CD19-targeted CARs directed against specified B cell 

malignancies. (CLLL: Chronic lymphocytic leukemia; ALL: Acute lymphoblastic 

leukemia; B NHL: B lineage Non-Hodgkin’s Lymphoma; S/P HSCT: status post-

hematopoietic stem cell transplant; NHL: Non-Hodgkin’s Lymphoma; UPenn: The 

University of Pennsylvania; BCM: Baylor College of Medicine; NCI: National Cancer 

Institute; MDACC: MD Anderson Cancer Center; COH: The City of Hope National 

Medical Center; MSKCC: Memorial Sloan-Kettering Cancer Center) 
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Chapter 2 

DEVELOPMENT OF AN IN VITRO MODEL TO 
INVESTIGATE CAR-MEDIATED SIGNALING IN T CELLS 

Summary  

The recognition bestowed upon T lymphocytes as key mediators of cellular immunity has 

been further attested by recent successful clinical studies using genetically modified T 

cells. With an ever-growing interest in the application of T cells to treat human 

malignancies, studying the molecular mechanisms of T cell activation, signaling and 

function has become imperative. This, therefore, calls for the development of new easy-

to-use and accurate models to investigate the biological phenomena that begins at the 

synaptic levels of T cell and antigen interactions to the ultimate exhaustion and death of 

the T cell.  Here, we describe an approach to transiently express a chimeric molecule on 

the cell surface that permits activation and expansion of T cells, thereby providing a 

model to study T cells signaling. 

Introduction 

Deciphering the detailed cascade of events that initiate the earliest biochemical 

events ultimately leading to T cell activation has come a long way in the past few 

decades(Norcross, 1984; Smith-Garvin et al., 2009). More recently, the advent of 

synthetic biology has enabled easy genetic manipulation of T cells permitting the 

expression of chimeric molecules to enhance functions of T cells. One such method of 

genetic engineering is the engraftment of chimeric antigen receptors (CARs) on the T cell 

surface. CARs are synthetic molecules that contain a single chain variable fragment 
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(scFv) obtained from the variable chains of a monoclonal antibody with desired 

specificity, which is fused to intracellular domains that provide T-cell activation and 

costimulatory signals(Gross et al., 1989). CARs allow T cells to recognize pre-

determined targets, which would otherwise escape immune recognition, thereby making 

this technology an attractive tool in the combating various cancers and infections(June 

and Levine, 2015). Despite extensive clinical investigation of genetically engineered T 

cells, the intricate signaling mechanisms that occur downstream of such chimeric 

molecules is highly understudied. One major obstacle that has limited this research is the 

lack of an accurate model to study the antigen-receptor synapse as well as signaling 

downstream of it. 

Current in vitro models for activation and expansion to study T cell signaling and 

function pose several limitations. Until about a decade ago, mitogenic lectins such as 

phytohemagglutinin (PHA) and concanavalin A (Con A) were being used for stimulation 

and expansion of polycloncal T cell population(Kay, 1991). These mitogenic molecules 

bind to glycoproteins on the cell surface. Another such stimulant is phorbol 12-myristate 

13-acetate (PMA), which activates T cells by direct stimulation of protein kinase C(Kay, 

1991). To achieve T cell receptor (TCR) complex-specific stimulation, antibodies 

specific to such molecules, including CD2, CD3, CD28 and CD45 have being used. 

These antibodies provide the required co-stimulatory signal to trigger complete activation 

and proliferation of T cells in culture(Frauwirth and Thompson, 2002). The field has 

since progressed to immobilizing these antibodies to accessory cells, beads or a solid 

surface for robust expansion of T lymphocytes(Trickett and Kwan, 2003). 
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Requirement of a functional TCR, reliance on commercial vendors for production, 

procurement and application of TCR-antagonizing antibodies and the additional costs of 

acquiring two different antibodies (primary and secondary stimulants) for complete T cell 

activation, all contribute to the myriad of limitations and drawback of these methods. 

Prolonged stimulation of with such antibodies could provide “excess” activation signal, 

which, in naïve T cells for example, has been shown to be detrimental(Collette et al., 

1998; Noel et al., 2001). There is thus, a clear need for an improved model to study T cell 

signaling. 

Described below is refined method that can be employed for the activation and/or 

expansion of immune cells. Briefly, the technique involves transient expression of a CAR 

molecule of the T cell surface and subsequent activation via a ligand specific to the CAR 

molecule. The transient mode of gene delivery allows CAR expression on over 95% of 

the cells, thereby allowing activation of almost the entire cell population. 

Materials 

Production of in vitro transcribed (IVT) mRNA 

1. The IVT mRNA encoding the CAR can be manufactured using a polymerase 

chain reaction (PCR)-generated template. This template is the DNA sequence of 

the CAR of interest obtained from any appropriate source such as plasmid DNA, 

cDNA, or synthetic DNA sequence. 

2. The template must contain appropriate promoters and a corresponding RNA 

polymerase. For example, to use the T7 mScript
TM

 RNA system (Catalog no. C-

MSC11610, Cellscript, WI, USA) requires the T7 bacteriophage promoter 
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(TAATACGACTCACTATAG) upstream of the double-stranded DNA template. 

Other RNA production kits using different promoter systems, such as SP6 and T3 

are also available and can be used for synthesis of mRNA to be used for this 

protocol. 

3. Follow the manufacturer’s instruction for mRNA production. Purify IVT mRNA 

products using an RNeasy Mini Kit (Qiagen Inc, Valencia, CA, USA) as per 

manufacturer’s specifications. Elute purified mRNA in sterile RNAse-free water 

at a concentration of 1mg/ml. Prepare aliquots of 10μl each in RNAase-free tubes 

and store at -80°C until further use. 

Components for electroporation 

1. ECM830 Electro Square Wave Porator (Harvard Apparatus BTX, MA, USA) 

2. 2mm cuvette (Catalog no. 1652086, Biorad, Hercules, CA, USA)  

Components for cell culture and CAR expression analysis 

1. Opti-MEM I: Reduced serum medium (Catalog no. 31985, Gibco, Grand Island, 

NY, USA) 

2. R10: RPMI 1640 medium (Catalog no. 11875, Gibco, Grand Island, NY, USA) 

supplemented with 10% fetal calf serum. 

3. One T25 culture flask for every 1x10
7
 cells electroporated. 

4. FACS tubes: 5ml round-bottom tubes for flow cytometry analysis. 

5. FACS buffer: Phosphate buffered saline with 1% fetal calf serum. 

6. CAR detection antibodies: Biotin-labeled polyclonal anti-mouse F(ab)2 (Catalog 

no. 115-006-072, Jackson Immunoresearch, PA, USA) or any other antibody that 
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would detect the CAR scFv. If it is not pre-conjugated with a flurochrome, then 

use phycoerythrin-labeled streptavidin (Catalog no. 554061, BD pharmingen, CA, 

USA) 

Antigens and coating of stimulation beads 

1. Antigen: Purified antigenic protein or an anti-idiotype specific to the scFv of the 

CAR. This cognate antigenic molecule should specifically bind to and stimulate 

the distinctive sequence of the scFv. 

2. Stimulation beads: Cognate antigen needs to be coupled with magnetic 

tosylactivated beads, such as Dynabeads. M-450 (Catalog no. 14103, Life 

Technologies, Grand Island, NY, USA). The coupling procedure needs to be 

followed as per the manufacturer’s instructions. Briefly, the coupling is performed 

overnight by co-incubation of the antigenic molecule with the Dynabeads at a 

high pH (8.5-9.5) and at 37°C. The coated beads should be stored at 4°C at a 

desired concentration in the bead-storage buffer as specified in the manufacturer’s 

protocol. Suggested concentration for long-term bead storage is 3x10
7
 beads/ml. 

Methods  

Carry out all procedures at room temperature and in sterile conditions unless otherwise 

specified. 

Electroporation of mRNA into T cells 

1. Obtain live T cells from any source (human peripheral blood, human umbilical 

cord blood, etc) and count cells while ensuring good cell viability. 
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2. Centrifuge cells at 300xg for 5 minutes at 4°C. Carefully discard supernatant and 

resuspend cell pellet in fresh Opti-MEM media. 

3. Centrifuge again and repeat wash steps for a total of three washes. 

4. Count and resuspend cells in fresh Opti-MEM media at 1x10
8
 cells/ml. For each 

electroporation, aliquot 1x10
7
 cells in a 100μl of Opti-MEM. Keep cells on ice 

until use. 

5. Pre-configure the electroporator by setting the voltage to 500V and time to 

1000μ-seconds. Prewarm R10 to 37°C and add 10ml of the media to a T25 flask. 

6. In a separate tube, combine 10μg of RNA (stock concentration of 1mg/ml) with 

the 100μl aliquot of cells. Uniformly mix by gentle pipetting. Immediately empty 

the entire content into a 2mm cuvette. (See notes for manipulation of RNA 

quantity to modulate CAR expression levels). 

7. Place the cuvette into the electroporator cassette, tighten the electrodes around the 

metal plates of the cuvette and initiate the electric pulse. 

8. Immediately transfer the contents of the cuvette into the T25 flask containing 

R10. Rinse the cuvette once with fresh R10 to maximize recovery of 

electroporated cells. 

9. Place the cells in a 37°C CO2 incubator until further use. 

Surface detection of CAR on electroporated T cells 

1. Allow cells to rest for at least 3-4 hours before analyzing surface expression. 

2. Count and collect an aliquot of about 150,000 cells in a FACS tube in a total of 

3ml. Add additional FACS buffer if needed. 
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3. Centrifuge cells at 300xg for 5 minutes at 4°C, discard supernatant and carefully 

resuspend cell pellet in 3ml FACS buffer. Centrifuge the tube again and repeat 

this wash step one more time with fresh FACS buffer. 

4. Resuspend cell pellet in 10μg of primary antibody diluted in a total of 100μl 

FACS buffer. Incubate on ice for 45 minutes. 

5. After the incubation period, add 3ml FACS buffer and centrifuge the tube to wash 

off unbound antibody. Repeat this wash one more time with fresh FACS buffer. 

6. If the primary antibody was pre-conjugated to a flurophore, skip to step 8. If using 

a non-conjugated primary antibody, resuspend cell pellet in 1μg of secondary 

antibody diluted in a total of 100μl FACS buffer and incubate on ice for 15 

minutes. 

7. Following the incubation, repeat washes twice as performed earlier. 

8. Finally resuspend the cells in a desired volume and analyze samples on a flow 

cytometer to check surface expression of CARs (Figure 2.1).  

CAR T cell stimulation 

1. After verifying CAR expression and cell viability, collect the desired number of 

cells to be stimulated. Add R10 if required to bring the final cell concentration of 

0.8-1x10
6
 cells/ml. 

2. Typical bead to cell ratio for optimal stimulation is 3:1. This ratio may vary based 

on the affinity and activation threshold of the scFv used in the CAR. Calculate the 

total number of beads required for the desired number of CAR-positive T cells 
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and collect it in an appropriately sized tube. . (See notes for different stimulation 

conditions) 

3. Wash off any bead-storage buffer by applying the beads against a magnet and 

rinsing the beads with fresh R10. At least three rinses are recommended. 

4. Finally add the beads to the cells. 

5. Culture the cells in a 37°C CO2 incubator for desired time-periods. For long-term 

cultures, certain cell types may require exogenous supply of growth cytokines. 

Notes 

1. RNA introduction into target cells can be carried out using other available 

electroporation instruments that are commercially available, including, but not 

limited to Amaxa Nucleofactor-II (Amaxa Biosystems, Cologne, Germany), Gene 

Pulser Xcell (Biorad, Denver, CO, USA) or Multiporator (Eppendorf, Hamburg, 

Germany). 

2. RNA transfection can also be carried out using other methods of gene transfer, 

including, but not limited to lipofection, polymerase encapsulation, peptide 

mediated transfection or gene guns. 

3. The level of CAR expressed on the surface can be titrated by varying the amount 

of mRNA used in the gene transfer protocol (Figure 2.2). 

4. Transfection efficiency and expression of CAR mRNA can be measured by any 

other method including northern analysis, western blot or quantitative real time 

PCR. 
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5. In vitro culture of certain cell types may require culture media supplemented with 

cytokines such as IL2, IL7, IL15, etc. 

6. For short-term signaling analysis, stimulate cells for desired time-periods with 

antigen-coated beads, collect and lyse cell pellet for western blot analysis (Figure 

2.3). Alternatively, signaling events in stimulated cells can be monitored by flow 

cytometry-based methods. 

7. Signaling events and analysis of antigen-receptor synapses can also be studied by 

coating antigen on the surface of a culture plate. 

8. This method can be utilized for long-term expansion of T cells in culture. Below 

is a growth curve of CD8
+
 T cells electroporated with a CD19-BBζ CAR cultured 

with anti-idiotype beads against CD19 and in the presence of 10ng/ml of IL7 and 

IL15 cytokines each (Figure 2.4). 

9. This protocol can be extended to study signaling and perform in vitro expansion 

of other T cell subset including CD4+ T cells, naïve T cells, T-regulatory cells, 

Th-17 cells, as well as anergized T cells and stem cells. 

10. This protocol can also be applied to other lymphocytes including, but not limited 

to NK, NKT and B cells. 

11. This protocol can be used for in vivo expansion of lymphocytes. 
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Figure 2.1 CAR surface expression. 

CAR expression on T cell surface as measured at different time points post gene 

transfer. Cells electroporated without any mRNA (mock) serve as a staining control. 
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Figure 2.2 Titration of CAR densities. 

Surface expression of electroporated CAR mRNA showing gradual increase of mean 

fluorescence intensities with corresponding increase in mRNA amounts. 
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.  

Figure 2.3 CAR-specific signals induced in CAR-T cells. 

Phosphorylation of a distal signaling protein (Erk) following stimulation with an anti-

idiotype against the CAR scFv at specified time points. T cells electroporated without 

any mRNA (mock) serve as a stimulation control. 

  



www.manaraa.com

 
 

30 

 

Figure 2.4 Expansion profile of CAR T cells. 

CD19 28ζ CAR T cell growth recorded post stimulation with an anti-idiotype against 

the anti-CD19 scFv and cultured in the presence of IL7 and IL15. T cells not 

expressing CARs (mock) serve as a stimulation control.  
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Chapter 3 

REPROGRAMMING THE METABOLIC FATE OF T CELLS 
WITH DISTINCT SIGNALING DOMAINS IN CHIMERIC 

ANTIGEN RECEPTORS 

Summary 

Chimeric antigen receptors (CAR) redirect T cell cytotoxicity against cancer cells, 

providing a promising new approach to cancer immunotherapy. Despite extensive clinical 

use, the attributes of CAR co-stimulatory domains that impact persistence and resistance 

to exhaustion of CAR-T cells remain largely undefined. Here we report the influence of 

CD28 and 4-1BB signaling domains on the metabolic characteristics of human CAR T 

cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8
+
 

central memory T cells that had significantly enhanced respiratory capacity, increased 

fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells 

with CD28 signaling domains yielded effector memory cells with a genetic signature 

consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic 

insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 

signaling domains in clinical trials and inform the design of future CAR T cell therapies. 

Introduction 

Adoptive immunotherapy based on the infusion of genetically redirected 

autologous T cells has demonstrated promise for the treatment of both hematologic 

malignancies and solid tumors.  Accordingly, multiple gain-of-function strategies to 

endow T cells with desired antigen receptors, based on either T cell receptors (TCRs) or 
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chimeric antigen receptors (CARs) have been described (June et al., 2015). Among 

several proposed strategies, the use of CARs has shown potent effects in augmenting the 

immune response to cancers, particularly B cell malignancies (Brentjens et al., 2013; 

Grupp et al., 2013; Kalos et al., 2011b). Although CAR T cell therapy can have a 

significant impact on disease clearance, the essential components of a clinically 

successful CAR, and how they influence therapeutic efficacy, remain largely undefined 

(Kalos and June, 2013). 

CARs are synthetic molecules that combine the effector functions of T cells with the 

exquisite specificity of antibody-binding domains. In their simplest form, these receptors 

consist of the TCR grafted to extracellular variable regions of an antibody (Eshhar et al., 

1993; Kuwana et al., 1987). One advantage of antibody-based receptors is that they can 

recognize pre-defined tumor targets independent of antigen processing and MHC-

restricted presentation, rendering a single design applicable to a wide range of patients. 

First generation CARs consisting of the cytoplasmic domain of the Fc receptor γ chain or 

the CD3ζ signaling modules alone often become anergic and do not elicit potent T cell 

antitumor effects (Brocker, 2000; Kershaw et al., 2006; Lamers et al., 2006). This led to 

the development of second and third generation CARs that incorporate additional 

costimulatory cytoplasmic domains such as CD28, 4-1BB (CD137), ICOS, and OX40, 

either individually or in combination (Dotti et al., 2014; Sadelain et al., 2013). This 

modular design successfully recapitulates many aspects of natural costimulation and 

enhances proliferation and function of CAR T cells (Maus et al., 2014). 
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CD19-specific CAR T cells have shown encouraging clinical responses against 

various hematological malignancies, including chronic lymphocytic leukemia (CLL), 

acute lymphoblastic leukemia (ALL) and diffuse large B cell lymphoma. The success 

rates however, have been difficult to compare due to several variations in study design, as 

well as differences in the single chain variable antibody fragment (scFv), costimulatory 

domains, gene-transfer protocols and interventions following CAR T cell infusion, 

among others. Trials conducted with CARs incorporating CD28 or 4-1BB costimulatory 

domains have shown similar initial response rates in patients with ALL (Brentjens et al., 

2013; Lee et al., 2015; Maude et al., 2014). However, in CLL the clinical efficacy of 

CAR T cells with 4-1BB costimulatory domains (Porter et al., 2015) appears superior to 

CD28 domains (Brentjens et al., 2011). The reported persistence of CD28-based CAR T 

cells in vivo is about 30 days (Brentjens et al., 2013; Lee et al., 2015) in contrast to the 

sustained expression and effector function of 4-1BB CAR T cells, which may exceed 4 

years in some patients (Porter et al., 2015). In addition, the incorporation of 4-1BB 

signaling domains in certain CARs ameliorates exhaustion (Long et al., 2015). Another 

important consideration is that endogenous CD28 and members of the TNF Receptor 

family (TNFR) such as 4-1BB invoke distinct signaling cascades in T cells. CD28 leads 

to activation of the P13K/Akt pathway with downstream effects on glucose metabolism 

and increased glycolysis (Frauwirth et al., 2002). In contrast, endogenous 4-1BB 

signaling has been implicated in imparting long term survival benefits to T cells 

(Sabbagh et al., 2008) and signaling pathways used by 4-1BB are distinct from CD28 

(Martinez-Forero et al., 2013). Enhanced fatty acid oxidation (FAO) contributes to T cell 
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memory (Pearce et al., 2009). Thus a thorough understanding of the molecular signaling 

effects of CARs may in part, explain the observed differences in clinical efficacy for 

CLL. 

A challenge for the identification of optimal CAR designs has been the lack of a 

physiological in vitro model investigating the impact of CAR-based stimulation. 

Moreover, current gene transfer protocols using retroviruses require concomitant 

activation of T cells via its endogenous TCR, potentially obscuring effects due to 

signaling through the CAR per se. In this report, we describe an approach enabling CAR 

expression in over 90% of the T cells without the need to activate the endogenous TCR. 

Stimulating the CAR T cells with cognate antigen permitted identification of distinct 

effects on the differentiation and metabolism of primary human T cells. Interestingly, we 

find that CAR signaling domains can mediate metabolic reprograming, while modifying 

bioenergetics and mitochondrial biogenesis. We found that 4-1BBζ CAR T cells 

demonstrate enhanced survival associated with an increased frequency of central memory 

T cells, mitochondrial biogenesis and greater oxidative metabolism. In contrast antigen 

stimulation of CD28ζ CAR T cells promoted effector memory differentiation and led to 

enhanced aerobic glycolysis. 

Results 

BBζ CAR T cells show increased expansion and survival ex vivo 

We initially compared two CAR designs (Figure 3.1A) specific for either CD19 

or mesothelin. The CARs were equipped with signaling domains comprised of either 

CD28 (Kochenderfer et al., 2009) or 4-1BB (Milone et al., 2009). These CARs were 
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chosen because they have been tested extensively in clinical trials (Beatty et al., 2014; 

Kochenderfer et al., 2012; Lee et al., 2015; Maude et al., 2014; Maus et al., 2013; Porter 

et al., 2015). Both CAR constructs were expressed on >90% of CD4
+
 and CD8

+
 T cells at 

comparable MFIs (Figure 3.1B). We compared the effects of the CD28 and 4-1BB 

(referred to as 28ζ and BBζ) signaling domains on the differentiation and metabolic fate 

of T cells following the protocol described in Figure 3.1C. CD4
+
 T cells were cultured in 

medium supplemented with 30U/ml of human IL2. CD8
+
 T cells were cultured in 

medium supplemented with either 100U/ml of human IL2 or 10ng/ml IL7 and 10ng/ml 

IL15, as indicated. Approximately 24-hours post electroporation, CAR-T cells were 

stimulated with a bead-bound anti-idiotype-Fc to the FMC-63 scFv, which serves as a 

surrogate for cognate CD19 antigen. To ensure that the CAR T cells received uniform 

stimulation, we analyzed the surface expression of the activation molecule CD69 on day 

1 post activation. CD69 is an inducible cell surface glycoprotein that is a sensitive 

indication of lymphoid activation (Hara et al., 1986). Cells that received CAR-specific 

stimulation showed elevated levels of CD69 on Day 1 that was similar on 28ζ and BBζ 

CAR T cells (Figure 3.2A). However, However, the proliferative potential of both CD4+ 

and CD8
+
 T cells bearing the BBζ CAR was extended through to at least Day 20. In 

contrast, the proliferative phase of 28ζ CAR T cells was limited to 14 days (Figure 3.2B, 

p<0.01). CAR surface expression rapidly decreased following stimulation with cognate 

antigen. In one donor, we observed over 10 population doublings in the BBζ CAR T cell 

culture, expanding the starting culture of 4x10
6
 cells to a calculated yield of over 5x10

9
 in 

less than four weeks (Table 3.1). Interestingly, the BBζ CAR T cells persisted in culture 
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for over 4 weeks in cytokine-supplemented medium following a single stimulation. In 

contrast, the proliferation and survival of the 28ζ CAR T cells was lower.  Although 

proliferative capacity varied among donors, the trend remained consistent, in that BBζ 

CAR T cells displayed a higher proliferative capacity and persistence compared to the 

28ζ CAR T cells. Similar results were obtained using CARs directed against mesothelin 

(Figure 3.2C and Table 3.1). For the remainder of this study, we have focused on the 

effect of CAR design in CD8
+
 T cells. 

BBζ CAR signaling promotes enhanced central memory T cell (TCM) subset 

We hypothesized that the enhanced persistence of BBζ T cells was due to a 

relative preservation of cells with a more extensive proliferative capacity. To test the 

differentiation status of BBζ and 28ζ CAR-T cells, we used a standard panel of cell 

surface markers associated with T cell differentiation. We assessed expression of 

CD45RO and CCR7, which are associated with TCM. All cultures contained the same 

heterogeneous population of T cell subsets at day 0. After stimulation through the CAR, 

the proportion of CD45RO
+
CCR7

+
 cells was progressively enriched (Figure 3.3A). 

Notably, the enrichment of this TCM population was higher in the BBζ CAR group 

compared to the 28ζ group (p<0.01), and persisted through the end of culture (Figure 

3.3B). In contrast, the 28ζ CAR cultures consistently yielded a higher proportion of 

effector-memory phenotype (TEM), identified as CD45RO
+
CCR7

-
 cells. 

CAR signaling domains reprogram T cell metabolism  

Upon stimulation, CD8
+
 T cells undergo an ordered process involving 

proliferation and differentiation into effector and memory cells. Activation is associated 
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with a biosynthetic and bioenergetics flux required to support T cell proliferation and 

function (Pearce and Pearce, 2013; Wang and Green, 2012). For example, naïve and 

memory T cells rely primarily on the mitochondrial oxidation of free fatty acids for 

development and persistence (Pearce et al., 2009; van der Windt et al., 2012). In contrast, 

activated effector T cells shift to glycolysis or concurrently upregulate oxidative 

phosphorylation and aerobic glycolysis to fulfill the metabolic demands of proliferation 

(van der Windt et al., 2012).  

Based on the distinct growth rates and differentiation of 28ζ and BBζ CAR T 

cells, we sought to explore the interconnection of cellular metabolism and CAR 

signaling. We first examined the metabolic profiles of T cells expressing the two CARs at 

different time points after stimulation. Cell volume, a surrogate for cell mass, was found 

to be comparable after cognate antigen stimulation (Figure 3.4A). We measured the 

oxygen consumption rate (OCR) of 28ζ and BBζ CAR T cells before and 7 and 21 days 

after antigenic stimulation during log-phase proliferation. Basal OCR was measured, 

followed by serial additions of oligomycin (inhibitor of ATP synthesis), FCCP (Carbonyl 

cyanide-p-trifluoromethoxyphenylhydrazone, an uncoupling ionophore) and rotenone 

with antimycin A (blocking agents for complex I and III of the electron transport chain, 

respectively) to discern the relative contributions of mitochondrial and non-mitochondrial 

mechanism of oxygen consumption (van der Windt et al., 2012). The OCR profiles were 

similar before antigen stimulation on day 0 (Figure 3.4B). After antigen stimulation, there 

was a ~10-fold increase in basal OCR in both groups of T cells on days 7 and 21 (Figure 

3.4C). However, there was a robust increase in maximal respiratory capacity that was 
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specific to the 19-BBζ CAR T cells, following decoupling of the mitochondrial 

membrane using FCCP on both days 7 and 21 (Figure 3.4D). In contrast the maximal 

respiratory capacity of the 28ζ CAR T cells on days 7 and 21 was similar to day 0. To 

confirm that these differences in OCR were due to the signaling domains of the receptor, 

similar experiments were performed using mesothelin-specific CAR T cells. The 

mesothelin-BBζ CAR T cells exhibited an elevated basal and maximal respiratory 

capacity compared to the 28ζ CAR T cells on day 7 and 21 after stimulation with 

mesothelin. We also measured the extracellular acidification rate (ECAR) as a 

measurable surrogate for lactic acid production during glycolysis. Glycolysis involves a 

series of enzyme-catalyzed reactions culminating in the production of lactic acid. At 

physiologic pH, lactic acid dissociates into lactate and H
+
, which are exported 

extracellularly. ECAR levels were elevated in 28ζ cells as compared to BBζ CAR T cells 

on days 7 and 21 (Figure 3.4E). 

Several reports have shown that natural central memory differentiated T cells 

have basal OCR and spare respiratory capacity (SRC), likely reflecting a metabolic 

switch to FAO (Pearce et al., 2009; van der Windt et al., 2012). Since we saw a 

differential enrichment of memory phenotypes in the two CAR T cell groups in culture, 

we proceeded to investigate how the metabolic profiles are distinct within these sub-

populations. Again, using CCR7 and CD45RO as phenotypic markers, we sorted the 

populations into CCR7
+
CDRO45

-
, CCR7

+
CDRO45

+
 and CCR7

-
CDRO45

+
 to define 

naïve-like (N), central memory (TCM) and effector memory (TEM) subpopulations, 

respectively. Performing the seahorse assay on these cells revealed higher basal OCR and 
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maximum respiratory capacity of the BBζ in the TCM and TN memory subtypes as 

compared to 28ζ CAR T cells (Figure 3.5A and 3.5B). As observed in past reports 

concerning effector cells, the basal OCR as well as the maximum respiratory levels 

remained low for the TEM subpopulations for both CAR groups (Figure 3.5C). The ECAR 

levels, on the other hand remained higher for TCM and TEM subpopulations of cells 

obtained from the 28ζ CAR T cell culture (Figure 3.5D). 

The supplementation of culture medium with exogenous cytokines is necessary to 

support the long term proliferation of primary human CD8 T cells. This is a well- 

established practice routinely adopted by all labs studying human CD8 lymphocytes. To 

ensure that the cytokines used are not responsible for driving the metabolic responses, we 

compared the growth patterns of the CAR T cells in media supplemented with either IL2 

or a combination of IL7 and IL15. We found no difference in the exponential growth of T 

cells within the same CAR group when compared with either cytokine cocktail (Figure 

3.6A). The relative trends in OCR remained similar irrespective of the cytokine used 

(Figure 3.6B and C). Importantly, cytokine receptor expression was comparable in both 

CAR groups, indicating that the proliferative differences between the different CAR T 

cells are not due to differences in cytokine receptor expression (Figure 3.6D). 

To analyze whether there is a dominant effect of one signaling domain over the 

other, we included the cytoplasmic domain of CD28 in the SS1-BBζ CAR to yield the 

third generation of CAR, referred to as SS1-28BBζ. After antigenic stimulation, we 

observed similar growth patterns between these three CAR groups (Figure 3.7A). 

However, the metabolic profile, as assayed using the seahorse analyzer differed (Figure 
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3.7B). Particularly the basal OCR and maximal OCR were lowered with the inclusion of 

the CD28 domain in the BBζ CAR structure (Figure 3.7 C and D). This suggests that the 

CD28 signaling may be dominating in the context of a CAR. Although tested in only a 

single donor so far, this experiment serves as a preliminary finding that needs further 

investigation.  

In aggregate, these studies show that BBζ CAR T cells are metabolically distinct 

from 28ζ CAR T cells with the former displaying greater capacity for oxidative 

metabolism that might contribute to the enhanced central memory differentiation and 

persistence of BBζ CAR T cells. 

28ζ and BBζ CAR T cells have distinct glycolytic and fatty acid metabolism 

To investigate if the differences in the basal OCR in CAR T cells altered the fuel 

sources by which these cells satisfy their bioenergetic appetite, we proceeded to measure 

glucose uptake and fatty acid utilization rates in CAR T cells. At day 7 post stimulation, 

the cells were replated in fresh media. At different points (as indicated in Figure 3.8A), 

we measured the amount of residual glucose in the media and the lactate produced. 28ζ 

CAR T cells consumed glucose at a relatively quicker rate along with production of lactic 

acid. This is consistent with the greater ECAR we observed in 28ζ CAR T cells in Figure 

3.4E and 3.5D. 

The increased OCR in BBζ CAR T cells prompted us to examine the fatty acid 

consumption rate in these cells. Using a heavy carbon labeled long-chain fatty acid, 

palmitic acid, we analyzed its uptake rate by measuring the levels of heavy-carbon 

labeled acetyl-CoA. The catabolic process of beta-oxidation breaks down fatty acid 
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molecules into acetyl-CoA in the mitochondria to feed the citric acid cycle. We found 

that BBζ showed a higher percentage of labeled acetyl-CoA pool as compared to 28ζ 

CAR T cells (Figure 3.8B). This data suggests that BBζ CAR T cells, similar to CD8 TCM 

cells extensively rely on catabolic pathways such as FAO to fuel their bioenergetic 

demands. 

To gain insight into the mechanism leading to the metabolic differences conferred 

by distinct CAR signaling domains, we measured the expression of candidate genes that 

are implicated in glycolytic and lipid metabolism. We initially focused on two main 

enzymes implicated in glucose metabolism, Glut1 and PDK1. The cell surface expression 

of Glut1, the transporter involved in glucose uptake is induced following CD28 activation 

(Frauwirth et al., 2002). In certain contexts, including hypoxia, PDK1, inhibits the 

decarboxylation of pyruvate and entry of glucose derivatives into the TCA cycle (Duvel 

et al., 2010). Both Glut1 and PDK1 are induced to significantly higher levels in 28ζ cells 

relative to BBζ cells at day 7 (Figure 3.8C). Increased expression levels of Glut1 and 

PDK1, coupled with our earlier finding of increased ECAR is consistent with enhanced 

glycolysis in 28ζ CAR T cells, as compared to their BBζ counterparts. 

Two critical enzymes involved in the breakdown of glucose during the ATP-

generating step of the glycolytic pathway are Phosphoglycerate kinase (PGK) and 

Glucose-6-phosphate dehydrogenase (G6PD). PGK transfers a phosphate group to ADP 

to facilitate ATP generation, while G6PD, a NADP+-dependent enzyme catalyzes the 

oxidative phase of the pentose phosphate pathway. Since these enzymes have an 

important role in glycolysis, we investigated their expression levels in CAR T cells on 
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day 7. Interestingly, their levels were elevated in 28ζ CAR T cells relative to BBζ CAR T 

cells. Finally, we also examined the levels of Solute carrier family 16 (SLC16A3), an 

exporter of the glycolysis byproducts lactic acid and pyruvate. 28ζ CAR T cells showed 

higher levels of SLC16A3 mRNA as compared to BBζ T cells, consistent with our 

hypothesis that 28ζ CAR T cells use increased glycolysis as a means to meet their 

metabolic demands. We also detected increased expression of VEGFA in 28ζ CAR T 

cells, which is an established target of the hypoxia-inducible factors (HIF). Several genes 

involved in glycolysis are targets of HIF1α (Finlay et al., 2012) including Glut1 and PFK. 

Others have shown that HIF1α-/- knockout T cells display impaired autoreactivity (Dang 

et al., 2011). Our findings add to the growing body of evidence implicating costimulation 

through CD28 and glycolytic reprogramming in effector differentiation. 

To investigate the reliance of CAR T cells on fatty acids, we took advantage of a 

pharmacological inhibitor of an important mitochondrial transporter of fatty acids, known 

as carnitine palmitoyl transferase (CPT1A). CPT1A is a metabolic enzyme that controls a 

rate-limiting step in mitochondrial FAO as well as promoting mitochondrial biogenesis. 

Etomoxir is used disrupt the function of CPT1A. During the stimulation period of CAR T 

cells in culture, we added 50μM of Etomoxir on Day 3 and every 48 hours thereafter. 

Although the disruption of CPT1A showed no effects on the growth and survival of 28ζ 

CAR T cells, there was detrimental effect on the exponential growth of BBζ CAR T cells, 

which stopped proliferating after Day 7 (Figure 3.9). We further sought to investigate 

genes associated with mitochondrial FAO after triggering CAR T cells. Increasing 

evidence has demonstrated a role for CPT1A in regulating oxidative metabolism in CD8+ 
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memory T cells (van der Windt et al., 2012). We observed significantly higher levels of 

CPT1A mRNA in BBζ CAR T cells as compared to 28ζ CAR T cells. Additionally, 

mRNA levels of fatty acid binding protein (FABP5) that plays a critical role in long-

chain fatty acid uptake, transport and metabolism were significantly upregulated in BBζ 

CAR T cells compared to 28ζ (Figure 3.8C). These findings suggest that 28ζ CAR T cells 

rely more on a glycolytic based metabolism whereas BBζ programs T cells to use fatty 

acids as the predominant energy source, characteristics of natural effector and memory T 

cells, respectively. 

BBζ CAR T cells have increased Spare Respiratory Capacity 

Mitochondrial spare respiratory capacity (SRC) is a measure of how effectively 

protons can be shuttled into the mitochondrial intermembrane space upon cellular or 

mitochondrial stress (Mookerjee et al., 2010; Nicholls, 2009). SRC enhances survival and 

function of memory T cells by providing a contingency source of energy for cells 

exposed to metabolic stress including nutrient depletion, oxygen deprivation or under 

conditions of increased cellular activity. Increased SRC likely supports T cell function in 

a hostile tumor environment (Ferrick et al., 2008; Nicholls, 2009; Yadava and Nicholls, 

2007). Memory CD8+ T cells, unlike effectors, maintain a substantial SRC (van der 

Windt et al., 2012). When comparing the SRC of the two CAR groups, we observed that 

BBζ CAR T cells maintained higher levels of SRC as compared to 28ζ CAR T cells 

(Figure 3.10A). This is consistent with the metabolic characteristics of long-lived CD8+ 

memory cells, lending further support to the hypothesis that BBζ signals support a 

metabolic reprogramming that contributes to long-lived memory-like T cells. 
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Given the role of mitochondrial density in oxidative metabolism (van der Windt et 

al., 2012), we next explored the possibility whether the increased SRC in BBζ CAR T 

cells was associated with an increase in mitochondrial mass. Using electron microscopy, 

we measured similar mitochondrial density between 28ζ and BBζ CAR-T cells at day 7 

(Figure 3.10B and 3.10C). However, there was a substantial increase in mitochondrial 

mass in BBζ CAR T cells at days 14and 21 (Figure 3.10B and 3.10C) after antigen 

stimulation. Despite similar cell volumes (Figure 3.4A), we observed a significantly 

(p<0.001) increased density of mitochondria in BBζ CAR-T cells. We also measured 

mitochondrial density using confocal microscopy (Figure 3.11A). BBζ CAR T cells 

showed an increased ratio of mitochondrial mass to total cell mass on days 14 and 21 

(Figure 3.11B). 

BBζ CAR T cells show enhanced mitochondrial biogenesis 

We speculated that specific signals from the 4-1BB signaling domain in the CAR 

structure supported mitochondrial biogenesis, thus endowing these cells with greater 

mitochondrial mass. However, in addition to quantitative differences in mitochondrial 

content, we examined if qualitative differences in mitochondria might contribute to the 

differences in metabolic profiles between these CAR cells. We examined levels of certain 

mitochondrial genes encoded by the nuclear and the mitochondrial genome, namely 

TFAM and MTCO-1, respectively. Notably, BBζ cells had significantly enhanced mRNA 

expression of mitochondrial transcription factor A (TFAM) and mitochondrially encoded 

cytochrome c oxidase 1 (MT-CO1), the main subunit of the cytochrome c oxidase 

complex (Figure 3.12A). 
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To explore the role of 28ζ and BBζ costimulatory domains on the mitochondrial 

function in the context of CAR T cells, we measured gene expression of two transcription 

factors of mitochondrial genes, namely nuclear respiratory factor-1 (NRF1) and GA-

binding protein (also known as NRF2). While NRF1 regulates the expression of TFAM 

and coordinates mitochondrial DNA replication and expression, NRF2 has a role in the 

transcription of the OXPHOS components, mitochondrial import and TFAM. Consistent 

with its enhanced oxidative features as seen by metabolic flux analyses and mitochondrial 

density, we found that BBζ CAR T cells had significantly higher expression of NRF1 and 

NRF2 as compared to the 28ζ CAR T cell group (Figure 3.12B). We further substantiated 

the role of TFAM, by performing knock-down studies. Day 7 post stimulation with the 

CAR-cognate antigen, we knocked TFAM using a targeted siRNA pool. Two days 

following introduction of the siRNA, we confirmed knock down of TFAM and analyzed 

the cells on the seahorse flux analyzer. We observed significant decrease in the basal and 

maximum OCR levels in both CAR groups when treated with TFAM siRNA (Figure 

3.13A). The decrease in both these parameters was even more drastic in BBζ CAR T cells 

(Figure 3.13B and C), suggesting a major role of TFAM in shaping the oxidative features 

of these CAR T cells. 

Taken together, these findings suggest increased mitochondrial content in BBζ 

CAR T cells compared to 28ζ CAR T cells, which strongly correlates with the increased 

SRC observed in these cells. Our findings are consistent with a model in which BBζ CAR 

signaling reprograms transcriptional networks supporting mitochondrial biogenesis and 

oxidative metabolism. Given the role of metabolic adaptation in enabling T cell memory 
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and effector functions, the aforementioned oxidative features in BBζ CAR T cells likely 

support central memory differentiation and T cell persistence. 

Discussion 

We have uncovered significant differences in the differentiation and metabolic 

profiles of CAR T cells using CD28 or 4-1BB signaling domains. The predominant 

metabolic program in 28ζ CAR T cells is aerobic glycolysis and in BBζ CAR T cells it is 

oxidative breakdown of fatty acids.  Our studies provide evidence for plasticity in T cell 

metabolic reprogramming and further, that the choice of CAR signaling domain can 

impact the subsequent fate of the T cells. The enhanced proliferation and persistence of 

BBζ over 28ζ CAR T cells observed in our studies mirrors the outcomes of CAR 

persistence observed in clinical studies (Brentjens et al., 2013; Brentjens et al., 2011; Lee 

et al., 2015; Porter et al., 2015). Our studies suggest that one mechanism for the 

differential persistence may be the metabolic reprograming of the CAR T cells to 

enhance either oxidative phosphorylation that is characteristic of memory cells or aerobic 

glycolysis that is characteristic of effector cells (MacIver et al., 2013; van der Windt et 

al., 2012). 

Previous studies have shown that CD28 signaling initiates a cascade leading to 

enhanced surface expression of Glut1 and increased reliance on aerobic glycolysis 

(Frauwirth et al., 2002). In contrast a TNFR pathway is required for the initiation of 

mitochondrial FAO and T cell memory development (Pearce et al., 2009). While IL2 

promotes effector differentiation and glycolysis in CD8+ T cells (Finlay et al., 2012; Liao 

et al., 2013; Pipkin et al., 2010), IL7 and IL15 have been implicated in the maintenance 
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of memory T cells and increased mitochondrial biogenesis (Ku et al., 2000; Schluns and 

Lefrancois, 2003; van der Windt et al., 2012). As human CD8+ T survival is impaired in 

the absence of exogenous cytokines, IL7 and IL15 are necessarily present in our culture 

system. Although these extrinsic factors may play a significant role in stabilizing the 

metabolic profiles of T cells, we hypothesize that our system is largely governed by cell-

intrinsic factors influenced by the two unique intracellular CAR signaling domains. This 

is further corroborated by the lack of differences in the cell surface expression of these 

cytokine receptors, suggesting that the relative distinction in metabolic reprogramming 

between the two CARs cannot be solely mediated by the supplemented cytokines. Thus, 

our studies suggest that the ectopic expression of CD28 or 4-1BB signaling domains in 

CARs leads to a phenocopy of the natural T cell activation process. By extension, our 

studies suggest that the incorporation of various signaling modules may biosynthetically 

reprogram T cells to desired effector or regulatory functions. For example, we have 

recently found that the incorporation of the ICOS signaling domain in CARs promotes a 

Th17 differentiation program (Guedan et al., 2014).   

One clinical application of our findings is either that short-lived or long-lived 

CAR T cells can be created “at will”. This could extend the range of targets, depending 

on certain surface molecules where long-term CAR effects may not be tolerable due to 

potential off-tumor toxicity. In this case, a CD28 signaling domain would be expected to 

be superior.  Another implication from our studies is that a mixture of CAR T cells 

expressing 4-1BB and CD28 domains may be superior to either CAR as a single 

population. We speculate this because the combination of CAR T cells would be 
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expected to more completely mimic a natural immune response comprised of an early 

dominance of T effector cells, achieved with CD28 CARs having enhanced aerobic 

glycolysis in the cytoplasm, and T memory cells, achieved with 4-1BB CARs having 

enhance mitochondrial oxidative phosphorylation.   

Apart from cell intrinsic factors, there has been substantial interest in 

understanding the effects of nutrient consumption on T cell survival in the tumor 

microenvironment. T cells have substantial bioenergetic and biosynthetic challenges to 

survive and conduct effector functions. Our results indicate that BBζ CAR T cells have 

an increased capacity to generate mitochondrial mass. This increase in mitochondrial 

mass provides a survival advantage (van der Windt et al., 2013). We consistently saw a 

higher SRC in BBζ CAR T cells, and this mitochondrial respiratory capacity has been 

shown to be an important characteristic of natural CD8+ T cell memory development 

(van der Windt et al., 2012). The increased basal oxygen consumption of BBζ cells also 

suggests a preferential reliance on oxidative phosphorylation as the predominant energy 

generating mechanism to account for the metabolic demands required for enhanced CAR 

T cell proliferation. Our data further suggests that metabolism is a key mediator of CAR 

T cell survival, and is influenced by the signaling induced by the costimulatory domain 

included in the CAR. 

In summary, our results reveal a new role for CAR T cell engineering to control T 

cell metabolism as a key determinant of T cell effector and memory responses. Using 

synthetic biology it is possible to shape the immune response to a desired balance of 

long-lived memory cells and short-lived effector cells. By extension, our studies should 
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influence the design engineered T effector or engineered T regulatory cells that resist 

exhaustion or have enhanced survival in hostile tumor and inflammatory 

microenvironments. 

Experimental Procedures 

CAR constructs and generation of CAR-encoding in vitro transcribed (IVT) RNA 

For the purpose of these studies, CARs specific to the human CD19 or mesothelin 

antigen were used. Figure 3.1A shows the schematic of the CARs used in this study. All 

CARs contained the single-chain variable fragment (scFv) against human CD19 (clone 

FMC-63), or the SS1 scFv against human mesothelin protein, wherever indicated (Hassan 

et al., 2002; Nicholson et al., 1997). The mesothelin CAR was previously described 

(Carpenito et al., 2009). The CD28ζ CAR consisted of the scFv linked in cis to the 

intracellular domains of CD28 and CD3ζ through the CD8α hinge and a CD28-

transmembrane domain, as described previously (Milone et al., 2009). Similarly the BBζ 

CAR contained the scFv linked to the 4-1BB intracellular portion and the CD3ζ domain 

through a CD8α hinge and transmembrane domain (Milone et al., 2009).  For preparation 

of IVT RNA, the CAR-encoding gene constructs were subcloned into the pGEM.64A 

based vector, as described previously (Zhao et al., 2010).  

Isolation, electroporation and expansion of primary human T lymphocytes 

Primary human T lymphocytes were obtained from anonymous healthy donors at the 

University of Pennsylvania Apheresis Unit. Using the BTX CM380 (Harvard Apparatus 

BTX, Holliston, MA USA) electroporation machine, the IVT RNA was introduced into 
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the T cells at a ratio of 1ug RNA/10
6
 cells. This technique was optimized to promote 

uniform CAR expression on the cell surface (Figure 3.1B). T cells were stimulated using 

magnetic beads coated with a recombinant anti-CD19 idiotype or mesothelin-Fc.  

Flow cytometry analysis 

Live cells were gated on Live/Dead Aqua-negative and then gated for CD3, CD4 and 

CD8 positive events. Using markers for memory, CCR7 and CD45RO, cells in culture 

were analyzed and sorted for the three different memory phenotypes using the BD 

FACSCalibur. Absolute T cell counts were determined with the aid of CountBright 

Absolute Counting Beads (Life Technologies) using the formula: 

(Number of T cells events/number of bead events)  X  number of beads used 

Analysis of metabolic parameters 

Mitochondrial function was assessed using an extracellular flux analyzer (Seahorse 

Bioscience). Individual wells of an XF24 (for Figure 3.4B, C, D and E) or XF96 (for 

Figure3.5A, B, C and D) cell culture microplate were coated with CellTak in accordance 

with the manufacturer’s instructions. The matrix was adsorbed overnight at 37C, 

aspirated, air dried, and stored at 4C until use. Mitochondrial function was assessed on 

days 0, 7, and 21. To assay mitochondrial function, T cells were centrifuged at 1200g for 

5 minutes. Cell pellets were resuspended in XF assay medium (non-buffered RPMI 1640) 

containing 5.5 mM glucose, 2mM L-glutamine, 1mM sodium pyruvate and seeded at 

1x10
6
 cells/well. The microplate was centrifuged at 1000g for 5 minutes and incubated in 

standard culture conditions for 60 minutes. During instrument calibration (30 mins), the 
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cells were switched to a CO2-free, 37C, incubator. XF24/XF96 assay cartridges were 

calibrated in accordance with the manufacturer’s instructions. Cellular oxygen 

consumption rates (OCR) were measured under basal conditions and following treatment 

with 1.5µM oligomycin, 1.5µM fluoro-carbonyl cyanide phenlhydrazone (FCCP) and 

40nM rotenone + 1µM antimycin A (XF Cell Mito Stress kit, Seahorse Bioscience). 

Gene expression analysis by RT-PCR 

Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was used to 

quantify expression levels of certain candidate genes. Total RNA from cells was used as 

templates to synthesize cDNA using a High Capacity RNA-to-cDNA Kit (Applied 

Biosystems). qRT-PCR was performed in triplicates using Taqman Universal Master Mix 

on a ViiA 7 Real Time PCR system as per manufacturer’s instructions. mRNA levels of 

each candidate gene as quantified by the PCR system were normalized to a housekeeping 

gene, GAPDH. All probes used are commercially available (Applied Biosystems). 

Glucose uptake assay 

Cells at Day 7 post stimulation were starved in PBS at room temperature for 30 minutes 

followed by incubation at 37°C in regular RPMI culture media supplemented with 11mM 

glucose, 10% FCS, 100-U/ml penicillin, 100μg/ml streptomycin sulfate and 2mM 

glutamax. 500uL aliquots of cell culture was collected at indicated time points, spun 

down and the supernatants were analyzed for glucose and lactate concentrations using the 

Nova BioProfile Analyzer, Nova Biomedical, MA. 
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Palmitic acid uptake assay 

[
13

C16] palmitic acid was purchased from Sigma-Aldrich.  All solvents for LC-MS were 

Optima grade purchased from Fisher Scientific. For palmitic acid-labeled isotope 

experiments, cells were cultured overnight in RPMI 1640 w/o D-glucose, w/o L-

glutamine (Biological Industries) supplemented with 10% charcoal-stripped FBS 

(Gibco), 2mM L glutamine (Life technologies), 5.0mM glucose, and 100M [
13

C16] 

palmitic acid. 

Short-chain Acyl-CoA Extraction 

Extractions were performed as described previously (Basu and Blair, 2012; Worth et al., 

2014). Briefly, lymphocytes were centrifuged at 1200 rcf for 5 mins. Cell pellets were 

resuspended in 750l of ice-cold 10% trichloroacetic acid and pulse-sonicated using a 

sonic dismembrator (Fisher Scientific). The samples were centrifuged at 15,000 rcf for 15 

minutes and the supernatants were purified by solid phase extraction. Briefly, Oasis HLB 

1-ml (30mg) solid-phase extraction columns were conditioned with 1ml methanol, 

followed by 1ml of H2O. The supernatants were applied to the column and washed with 

1ml of H2O. The analytes were eluted in methanol containing 25mM ammonium acetate. 

The eluates were dried overnight in N2 gas and resuspended in 50l of 5% 5-

sulfosalicylic acid. 10l injections were applied in LC/ESI/MS/MS analysis.     

LC/MS Analysis of Acyl-CoA thioesters 

Acyl-CoA’s were separated using a Phenomenex Luna C18 reversed-phase HPLC column 

(2.0150 mm, 5 m pore size) with 5mM ammonium acetate in water as solvent A, 5mM 
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ammonium acetate in ACN/water (95:5, v/v) as solvent B, and ACN/water/formic acid 

(80:20:0.1, v/v) as solvent C as described previously (Basu et al., 2011; Worth et al., 

2014). A linear gradient was run as follows: 2% solvent B for 1.5 mins, increased to 25% 

over 3.5mins, increased to 100% over 0.5mins, held for 8.5mins, and washed with 100% 

solvent C for 5 mins before equilibration for 5 mins. The flow rate was 200l/min. 

Samples were analyzed using an API 4000 triple-quadrupole mass spectrometer (Applied 

Biosystems, Foster City, CA) in the positive electrospray ionization (ESI) mode. Samples 

(10l) were injected using a LEAP autosampler (CTC Analytics AG, Zwingen, 

Switzerland) and maintained at 4C. Data were analyzed using Analyst Version 1.4.1 

software (AB SCIEX). The column effluent was diverted to the mass spectrometer from 

8-23 min and to waste for the remainder of the run. The mass spectrometer operating 

conditions were as follows: ion spray voltage (5.0kV), nitrogen as curtain gas (15 units, 

ion source gas 1 (8 units), ion source gas 2 (15 units) and collision-induced dissociation  

(CID) gas (5 units). The ESI probe temperature was 450C, the declustering potential was 

105V, the entrance potential was 10V, the collision energy was 45eV, and the collision 

exit potential was 15V. A loss of 507Da was monitored for each acyl-CoA. 

Microscopy 

Cells at different time points were stained with DiI, Mitotracker green and DAPI (Life 

Technologies) and fixed with 4% PFA before imaging on the Leica TSC SP8 Confocal 

microscope. Captured images were analyzed using Fiji (ImageJ) and fluorescence 

emission was quantified as mean fluorescence intensity (MFI). For transmission electron 
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microscopy, the cells were prepared by Penn’s Electron Microscopy Resource Laboratory 

and imaged using the Jeol-1010 microscope. 
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Figure 3.1 CAR constructs and study design.  

(A) Schematics of the CAR constructs compared in this study. CARs contain a single-

chain variable fragment of the FMC63 antibody that binds human CD19 or the SS1 scFv 

that binds human mesothelin. The transmembrane (TM) and intracellular domains are 

indicated. 

(B) Flow cytometric analysis of cell surface expression of the CARs on day 1 after 

electroporation as compared to an electroporation only (Mock) control. The right panel 

shows the mean fluorescence intensities of the CARs detected with an anti-idiotype 

reagent. 

(C) CD8+ T cells are electroporated with in vitro transcribed CAR RNA. After the cells 

are rested overnight, the CAR expression is confirmed, and the in vitro culture 

commences with the addition of cognate antigen-coated beads and cytokines. 
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Figure 3.2 4-1BBζ signaling domain provides a survival and proliferative advantage 

to CD8+ T cells in vitro.  

(A) CD69 levels measured on cell surface 24 hours post co-culture with cognate antigen.  

(B) CD19 CAR T cell growth. CD4+ and CD8+ T cells were stimulated as in panel A. 

Data are representative of at least 10 different healthy donors.  

(C) Mesothelin CAR T cell growth of bulk CD8+ T cells (top) or naïve (CD45RO-

CD62L+CD8+) T cells (bottom). CAR T cells were stimulated using beads coated with 

mesothelin-Fc. 
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Figure 3.3 Enrichment of TCM in 4-1BBζ containing CAR T cells  

(A) Representative plots (from at least 6 donors) of cell surface expression of CCR7 and 

CD45RO on CAR T cells at specified time points during culture. Cells shown have been 

pre-gated for live CD3
+
CD8

+
 T cells. Numbers shown are percentages of cells detected in 

each gate.  

(B) Relative change of TCM and TEM subsets in 28ζ and BBζ CD19 CAR T cell cultures. 

Absolute numbers of live cells were calculated for each population at the specified time 

points. The graphs show relative fold change of TCM or TEM in BBζ CAR T cells 

normalized to 28ζ CAR T cells. Data plotted as mean±SEM (p=****<0.0001, **=<0.01). 
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Figure 3.4 Effects of CAR signaling domain on cellular metabolism.  

(A) Effects of antigen stimulation on mean cell volume after stimulation of CD19 CAR 

CD8
+
 T cells expressing 28ζ and BBζ signaling domains with anti-idiotype.  

(B) The oxygen consumption rates (OCR) of 28ζ and BBζ CAR T cells at baseline (after 

electroporation of CAR mRNA and before stimulation) on day 0, and after stimulation on 

days 7 and 21 in culture, under basal metabolic conditions and in response to 

mitochondrial inhibitors as specified in the methods.  

(C, D and E) Basal OCR levels (C), maximum respiratory levels (D) and basal ECAR 

levels (E) measured at days 7 and 21. Data representative of at least 5 independent 

experiments performed using at least 5 healthy human donor cells, plotted as mean±SEM 

(p=*<0.05). 
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Figure 3.5 Metabolic profiles of T cell memory subsets.  

(A and B) Basal OCR and maximum respiratory levels measured for CAR T cells sorted 

for different memory phenotypes - central memory (CM), naïve (N) and effector memory 

(EM). Data representative of at least 3 independent experiments performed using at least 

3 healthy human donor cells, plotted as mean±SEM 

(C) Basal ECAR levels measured for the three different sorted memory subsets. Data 

representative of at least 3 independent experiments performed using at least 3 healthy 

human donor cells, plotted as mean±SEM (p=*<0.05). 
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Figure 3.6 Distinct metabolic profiles observed is not influenced by cytokine cocktail 

used. 

(A) Growth curves of CAR T cells grown in media supplemented without cytokine or 

with either IL2 alone or IL7 and IL15. Data are representative of two different healthy 

donors. 

(B and C) The OCR of 28ζ and BBζ CAR T cells stimulated and cultured in media 

supplemented with IL2 alone or IL7+15, respectively. OCR measurements were 

performed on day 10 post CAR T cell stimulation. 

(D) Levels of cytokine receptors, IL-2Rα, IL-7Rα and IL-15Rα on cell surface as assayed 

by flow cytometry 
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Figure 3.7 Dominant effect of CD28 signaling over 4-1BB. 

(A) Schematic of CD19-28BBζ CAR used to compare growth profiles and metabolic 

reprogramming of T cells. 

(B) OCR profile, (C) basal OCR levels, (D) maximum respiratory levels of the three 

different CAR constructs compared. Seahorse analysis was performed on day 10 

following CAR stimulation.  
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Figure 3.8 Preferential reliance on glycolysis or fatty acid oxidation by CAR T cells. 

(A) Measurement of glucose uptake from extracellular media and lactate release into the 

media over a course of 48 hours. 

(B) Percentage of labeled acetyl-CoA measured in T cells cultured with [
13

C16] palmitic 

acid to assess fatty acid uptake and breakdown. 

(C) Relative mRNA expression levels of genes involved in glycolytic metabolism and 

lipid oxidation assessed in 28ζ and BBζ CAR T cells. Plot represents data from at least 3 

independent experiments using 4 independent donors (p=**<0.01; *<0.05). Data 

represented as mean±SEM. 
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Figure 3.9 Pharmacological inhibition of CPT1A has a detrimental effect on the 

growth profiles of 4-1BBζ CAR T cells but not CD28ζ CAR T cells. 

Growth curve showing population doublings of CAR T cells cultured for 14 days in the 

presence or absence of Etomoxir, an inhibitor of CPT1A.  
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Figure 3.10 Enhanced spare respiratory capacity (SRC) in 4-1BBζ CAR T cells. 

(A) SRC measured as the ratio between the maximum OCR levels after treating cells with 

FCCP to the basal OCR levels while in culture. Data represents three independent donors 

tested (p=*<0.05). 

(B) Transmission electron microscopy of 28ζ and BBζ CAR CD8
+
 T cells imaged at three 

different time points. Scale bars represent 2μm. 

(C) Enumeration of the individual mitochondrion per cell. Data shown represent 20 

individual randomly chosen cells (out of at least 75 cells analyzed per condition), 

represented as mean±SEM (p=***<0.001). 
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Figure 3.11 Enhanced mitochondrial biogenesis in 4-1BBζ CAR T cells. 

(A) Confocal images stained with Mitotracker (green), DAPI (blue) and a cell-membrane 

dye DiI (red). Scale bars represent 2μm. 

(B) Quantification of the percentage of cytoplasm occupied by mitochondria, measured 

as percentage of Mitotracker (green) within area enclosed by the cell membrane (red). 

Data represented as mean±SEM from at least 3 images each at specified time points with 

at least 15 independent cells scored per image. (p=****<0.0001). 
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Figure 3.12 Mitochondrial biogenesis in CAR T cells is regulated at a genetic level. 

(A) Relative mRNA expression of mitochondrial cytochrome c oxidase 1 (MT-CO1) and 

mitochondrial transcription factor A (TFAM) in BBζ CAR T cells normalized to 

expression levels of 28ζ CAR T cells at specified time points. Data generated from at 

least 3 independent experiments using 4 independent donors (*, p=<0.05), represented as 

mean±SEM. 

(B) Normalized mRNA expression levels of Nuclear Respiratory factor-1 (NRF1) and 

GA-binding protein (NRF2) in BBζ CAR T cells as compared to 28ζ CAR T cells at 

specified time points. Data generated from at least 3 independent experiments using 4 

independent donors (*, p=<0.05), represented as mean±SEM.  
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Figure 3.13 Marginal knock down of TFAM significantly lowers oxygen 

consumption rates of BBζ CAR T cells. 

(A) Oxygen consumption rates of CAR T cells electroporated with scramble siRNA or 

siRNA pool specific for TFAM. siRNA electroporation was done on day 7 post CAR 

stimulation and seahorse analysis was performed 3 days later. Unelectroporated control 

referred to as Mock. 

(B) Basal OCR and (C) maximum respiratory capacity of CAR T cells as specified in the 

graphs.  
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Table 3.1 Population doublings and cell yield of T cells expressing a 

CD19- or mesothelin-specific CAR coupled to CD28 or 4-1BB signaling 

domain. 

Donor 

# 

CAR Number of 

days in 

culture  

Total population 

doublings 

Cell yield  

(x10
6
 cells) 

1 CD19 28ζ  20 4.3 78.8 

CD19 BBζ 22 5.0 128.0 

2 CD19 28ζ 22 6.0 256.0 

CD19 BBζ 28 7.2 588.1 

3 CD19 28ζ 24 6.9 477.7 

CD19 BBζ 30 10.3 5,042.8 

4 SS1 28ζ 12 5.8 222.9 

SS1 BBζ 24 8.8 1,782.9 

5 SS1 28ζ 16 6.9 477.7 

SS1 BBζ 24 8.4 1,351.2 

6 SS1 28ζ 14 6.0 256.0 

SS1 BBζ 22 8.4 1,351.2 

 

Table 3.1 Healthy donor T cells were electroporated with the indicated CAR, and 

stimulated with anti-idiotype (CD19) or recombinant mesothelin Fc. The cells were 

counted and maintained in culture until at least two consecutive declines in cell numbers 

were observed. The last column shows the total number of cells obtained at the end of 

expansion, starting with 4x10
6
 cells in each group. SS1 is a mesothelin-specific scFv. 
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Chapter 4 

DISTINCT SIGNALING PATTERNS BETWEEN FIRST AND 
SECOND GENERATION OF CARs IN PRIMARY HUMAN 

LYMPHOCYTES 

Summary 

Chimeric antigen receptors (CARs) endow T cells with antibody-like specificity for cell 

surface antigens and promote the activation and differentiation of antigen-stimulated T 

cells. CARs targeting the pan-B cell marker CD19 have advanced to phase 2 clinical 

trials against B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic 

leukemia (CLL). CAR T cells with the 4-1BB signaling domain have demonstrated 

relatively higher clinical success in terms of tumor clearance, T cell persistence, and 

sustained remission in patients as compared to CD28 containing CAR T cells. Despite 

extensive clinical use, the molecular mechanisms involved in the activation of CAR T 

cells remain elusive, and it is unclear how the choice of CAR costimulatory molecule 

influences those mechanisms. We hypothesized that CARs take advantage of the 

endogenous T cell receptor (TCR) signaling pathways in a manner unique to their 

analogous intracellular domains. Using CARs specific for mesothelin and CD19, we 

compared the activation states of CAR T cells following cognate antigenic stimulation in 

vitro. We report that CARs with the CD28 intracellular domain (ICD) exhibit stronger T 

cell activation when compared to CARs with the 4-1BB ICD as measured by analysis of 

certain kinases and proximal signaling proteins. Stimulation of different CAR variants 

revealed that the antigen-specific activation threshold for CAR T cells is greatly reduced 

when the CD28 ICD is included in the CAR architecture. T cell activation state, 
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measured by the activation of proximal signaling proteins, as well as the MAPK and Akt 

signaling pathways, demonstrated increased and sustained stimulation in T cells with the 

CD28 ICD. Additionally, T cells with CARs containing CD28 ICD showed a high and 

sustained level of calcium flux in comparison to CAR T cells with the 4-1BB ICD, 

although no significant difference in NFAT activation was detected between these 

constructs. Taken together, these studies link the strong stimulation of CD28 CAR T cells 

to the reduced persistence, which adheres to the signal strength theory.  These findings 

should have significant impact on the future design of CARs and adoptive 

immunotherapy. 

Introduction 

T cells, when activated through recognition of foreign peptide sequences proliferate and 

exert cytotoxic functions in the human body.  These peptides can only be recognized in 

the context of Major Histocompatibility Complex (MHC) molecules on the surface of 

antigen presenting cells. MHC complexes, classified as I and II, specifically engage with 

CD8 or CD4 T cells, respectively.  In cancer, presented MHC-peptide complexes are 

usually recognized by the immune system as self-peptides and fail to activate a large 

proliferative or cytotoxic response. Tumor infiltrating lymphocytes (TILs) that have 

demonstrated promise in melanoma and personalized TIL therapy should and will be 

explored further (Alexandrov et al., 2013).  However, TILs for other tumor histotypes 

have not shown significant promise, either because the tumors are not immunogenic or 

the TILs expand poorly ex-vivo.  In contrast, antibodies against tumor-associated 

antigens are abundant and novel antibodies are continuously generated.  Combining the 
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cytotoxic power of T cells with the abundance of tumor antigen specific antibodies led to 

the development of chimeric antigen receptors (CARs). 

 

CARs were developed to significantly increase the repertoire of potential tumor-targeting 

T cell therapies by taking advantage of the large number of anti-tumor antibodies.  These 

antibody-based immune receptors were built in the first generation model as fusions of 

tumor-targeting scFvs to the FcRγ or CD3ζ subunits of the Ig or T cell receptor. These 

chimeric receptors redirect T cells to scFv-specified antigens in a MHC-independent 

fashion (Eshhar et al., 1993).  Second-generation CARs included the intracellular 

domains of costimulatory molecules in cis with the CD3ζ domain and membrane 

proximal into the structure (Marin et al., 2007).  CARs only require interaction with 

cognate antigen for T cell activation, in contrast to the MHC-peptide complex and co-

receptor required by the TCR. 

Phase I and Phase II clinical trials have explored the use of CAR T cells against B 

cell malignancies, and now against solid tumors as well.   Using the FMC63 scFv, which 

targets the extracellular domain of the pan-B cell marker CD19, multiple groups have 

demonstrated tumor rejection in acute lymphoblastic leukemia and chronic lymphocytic 

leukemia (Brentjens et al., 2011; Grupp et al., 2013; Porter et al., 2011b).  However, there 

are differences that exist between CAR usage in the second-generation costimulatory 

domain, the method of genetic introduction of the CAR, and in the T cell expansion 

protocol (Gill and June, 2015).  There are also differences in the response of CAR 

therapy, measured by persistence of such genetically modified cells, patients’ overall 
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survival, and patients’ relapse-free survival.  In particular, CARs containing the 4-1BB 

signaling domain demonstrate long-term persistence, which in some patients has been up 

to four years (Porter et al., 2015). On the contrary, CARs with CD28 signaling domain 

have not shown such superior persistence (Brentjens et al., 2013; Lee et al., 2015).  

One important question to answer within the CAR field is how the CAR 

functions.  Since their inception, it has been assumed that CARs employ the endogenous 

proximal and distal signaling machinery of the TCR.  Here we investigate this 

assumption, measuring the immediate signaling events that occur during CAR activation, 

and we compare the signaling cascades of CD28 and 4-1BB costimulated CARs to 

understand why 4-1BB costimulation provides enhanced T cell survival. 

Results 

28ζ CAR shows robust signal transduction in primary human T cells as compared to 

BBζ or ζ alone. 

We investigated the signaling proteins involved during the activation of T cells via 

stimulation through the CAR specifically. A schematic of the CAR constructs used in the 

study is shown in Figure 4.1A. By electroporation of in vitro transcribed RNA, surface 

expression of CARs on primary human T cells was measured (Figure 4.1B). Cells with 

no CAR (labeled as Mock) served as a negative control. Cell lysates from these 

stimulated cells were analyzed for proximal signaling proteins, such as ZAP70. ZAP70 is 

a member of the Syk family of kinases, which play an important role in activation of 

lymphocytes and mediate subsequent signaling events. Stimulation with cognate antigen, 

using beads coated with an anti-idiotype to the FMC-63 scFv beads, generated high-level 
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phosphorylation of ZAP70, an important proximal signaling initiator of the TCR 

signaling pathway, in the 28ζ CAR versus the ζ or BBζ CARs (Figure 4.2A). Analysis of 

distal signaling proteins in the MAPK pathway revealed high levels of phosphorylated 

Erk in the 28ζ CARs (Figure 4.2B). All cells were capable of being activated as shown by 

CD3/28 and PMA/Ionomycin stimulation controls. Analysis of unstimulated cells served 

as a negative control showing no basal levels of activation in these T cells. 

Rapid and sustained signal transduction in 28ζ CAR T cells. 

To assess the stimulation threshold of the different CAR signaling domains, we 

performed a time course of stimulation of these CAR T cells. The cells were co-cultured 

with antigen-coated beads in vitro for a period of 1, 5, 10, 15, 30, 60 and 120 minutes. 

The cell lysates were analyzed for proximal and distal signaling proteins as performed 

above. The 28ζ CAR showed rapid and intense signs of activation (Figure 4.3). ZAP70 

was phosphorylated immediately even after 1 minute of CAR-specific stimulation in the 

28ζ CAR, whereas the ζ and the BBζ CARs did not show such activation until 5 minutes 

or later (Figure 4.3). Phosphorylation of phospholipase C gamma (PLCγ), a crucial 

signaling mediator of the calcium-signaling pathway was also high in the 28ζ CAR T 

cells, as compared to BBζ or ζ. Analysis of distal signaling proteins Erk and Akt in the 

MAPK and Akt pathway, respectively revealed similar rates of phosphorylation events 

(Figure 4.4A and 4.4B). This suggests that the 28ζ CAR transduces the initial activation 

signals more rapidly as compared to the BBζ CAR. 
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28ζ shows intense calcium flux upon stimulation in primary human T cells.  

Changes in free intracellular calcium (Ca
2+

) play a key role in the activation and 

homeostasis of T cells. Engagement of TCR/MHC complexes triggers the 

phosphorylation and activation of PLCγ, which ultimately leads to  Ca
2+

 release from the 

endoplasmic reticulum and Ca
2+

 entry from the extracellular space (Ledbetter et al., 

1987). The dynamics of this Ca
2+

 signal (i.e. duration, amplitude, and frequency) 

determine the pattern of transcription factor activation and gene expression that 

ultimately influences T cell activation, proliferation, and apoptosis (Lewis, 2001). Since 

strength of proximal signaling varied between the CAR groups, we proceeded to explore 

how this may have an effect on calcium mobilization in T cells post CAR stimulation. 

We observed that SS1-28ζ CARs produce an intense, detectable calcium flux response in 

T cells, similar to stimulation of the TCR by OKT3 (Figure 4.5).  SS1BBζ and SS1ζ did 

not demonstrate a detectable calcium flux by flow cytometry with soluble surrogate 

antigen.  To assess the difference in calcium flux in individual cells, we labeled CAR-T 

cells with the ratiometric calcium-binding dye Fura-2 and stimulated with either 

mesothelin-Fc coated beads or K562 cells overexpressing mesothelin.  After perfusing 

Ca
2+

 containing media on the cells, SS1-28ζ CAR-T cells demonstrated a stronger and 

more prolonged calcium flux response than SS1-BBζ (Figure 4.6A and 4.6B).  Taken 

together, these results demonstrate that SS1-28ζ CAR-T cells exude a pronounced 

calcium signal with surrogate antigen stimulation not observed with SS1-BBζ CAR-T 

cell stimulation.  In addition, CD19-28ζ CAR Jurkat T cells exhibited a similar increase 

in calcium flux amplitude when stimulated with anti-idiotype coated beads compared to 
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CD19-BBζ CAR Jurkat T cells (Figure 4.6C). This difference in calcium flux intensity 

was not ameliorated in JRT3 Jurkat T cells, which lack the beta chain of the TCR and 

thus a membrane associated TCR. 

Point mutations in cytoplasmic tails of second generation CARs reveal interesting 

results 

To extend our studies to other CAR models currently being tested in the clinic, we 

compared signaling through a CAR containing the ICOS costimulatory domain. ICOS 

(inducible costimulator) is a member of the CD28 family and is constitutively expressed 

on TH17 cells(Hutloff et al., 1999).  Preclinical studies with ICOS signaling domains in 

CARs have indicated extensive proliferative and cytotoxic capacity(Guedan et al., 2014; 

Paulos et al., 2010). We compared the effects of ICOS signaling domains on the 

metabolic fates of CAR T cells. Using a mesothelin-specific CAR containing the 28ζ, 

BBζ, ICOSζ and 28BBζ we analyzed the mitochondrial OCR using the seahorse flux 

analyzer on day 7 post CAR stimulation. We noticed that the basal OCR for ICOSζ was 

higher than its CD28 counter-part, much like that of BBζ (Figure 4.7A). The maximum 

respiratory level of ICOSζ was also elevated compared to the other three CARs 

compared, signifying increased oxidative-based metabolism by these cells. To further 

investigate the significance of 28ζ intracellular domain, we made point mutations in 

various tyrosine residues that are known to be important phosphorylation sites for the 

docking of known signaling molecules. Mutation of the prolines in the distal SH3 domain 

(PYAP) that bind Lck, Grb2 and filamin-A resulted in increased basal and maximum 

OCR (Figure 4.7B). This increase was even more significant when the tyrosine residues 
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in that distal motif were substituted (Y188F and Y200F). Mutation in the Itk binding site 

(PRRP) yielded no such changes. Substitution of the tyrosine residue (Y170F) in the 

proximal YMNM motifs that is the docking site for p85, a subunit of PI3K, also 

increased the basal and maximum OCR, but changing the asparagine residue (N172Q) 

had no effect at all signifying a possible role of the PI3K-mediated signaling in modeling 

the metabolic profile of CAR T cells. 

The native ICOS cytoplasmic domain contains the YMFM motif in the 

corresponding region of CD28’s YMNM motif that binds to PI3K but not 

Grb2(Yoshinaga et al., 1999). We made two mutant CARs with substituted tyrosine and 

phenylalanine residues. Mutation of phenylalanine (F181N) resulted in decreased 

oxidative consumption both at the basal and maximum levels as compared to wild-type 

ICOSζ CAR (Figure 4.7C). On the contrary, abrogating the PI3K binding site at the 

tyrosine residue (Y179F), significantly enhanced the basal OCR as well as the maximum 

respiratory levels. These data are representative of analyses done using 2 independent 

healthy human donors. These promising results however must be looked into further to 

tease out the important signaling cascades initiated by these novel CAR constructs.  

Discussion 

The functional efficacy of CAR T cells has been shown in multiple preclinical 

and clinical studies using various tumor models in recent years. It therefore stands to 

reason that understanding the true mechanism that dictates CAR T cell effector function 

and survival in vivo is vital. Although various combinations of co-stimulatory signaling 

domains have been tested in CAR designs, CARs evaluated preclinically and clinically 
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have predominantly focused on two protein families – the CD28 superfamily, including 

CD28 and ICOS, or the tumor necrosis factor receptor superfamily, including 4-1BB, 

CD27, and OX40. Here, we systematically evaluated the functioning of the two most 

commonly employed co-stimulatory domains – CD28 and 4-1BB. We used a RNA 

electroporation platform to obtain CAR transgene expression greater than 95% in primary 

human T cells. By in vitro assays, we identified some signaling differences in 28ζ and 

BBζ CARs, which remained consistent across the scFv’s tested. Stimulation of primary 

human T cells expressing 28ζ CARs induces rapid and robust initiation of signaling 

cascades. These results provide valuable insights to the differences in clinical 

functionality observed between these CAR models. 

Endogenous 4-1BB signaling appears to play a key role during secondary T cells 

responses and is important for T cells sustenance, more so than CD28-mediated stimuli 

(Bertram et al., 2004; Dawicki et al., 2004). Further supporting this notion, reactivation 

of tumor-infiltrating lymphocytes with 4-1BB has shown a fair decrease in AICD 

(Hernandez-Chacon et al., 2011). Conversely, secondary stimulation through CD28 

alone, in the absence of CD3 does not yield great T cell proliferation and survival results 

(Siefken et al., 1998). Notably, studies have shown that that a secondary stimulation of 

pre-activated T cells through CD28 alone induced Fas-dependent (Collette et al., 1998) or 

Bax-mediated (Boussiotis et al., 1997) T cell apoptosis due to increased activation 

induced cell death. One could postulate that the percentage of pre-activated cells 

surviving and proliferating in response to a second costimulatory signal alone may be 

higher for 4-1BB as compared to CD28. Data from Chapter 3 also supports the 
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differences in survival of T cells stimulated through CARs containing either of these two 

costimulatory domains. This observation, at least in part, also explains the difference in 

longevity of CD28 (Davila et al., 2014) and 4-1BB-based (Grupp et al., 2013; Kalos et 

al., 2011a; Porter et al., 2011b) CAR T cells in treated ALL and CLL patients. Since T 

cells undergo an initial activation step ex vivo before the gene-transfer step, the CAR-

mediated signaling provides a secondary signal. Combining the effects of endogenous 

CD28 signaling referred above to our findings, one could hypothesize that the rapid 

signal transduction seen in CD28-based CAR T cells may be hampering T cells survival 

and proliferation. 

Another possible explanation for the observed differences in longevity of CD28 

and 4-1BB based CAR-T cells could relate to differences in the CARs ability to mobilize 

Ca
2+

. Although Ca
2+

 plays an important role in T cell activation and proliferation, 

increased Ca
2+

 signaling may lead to increased apoptosis among activated T cells. Indeed, 

Orai1-depedent Ca
2+

 entry and NFAT activation have been shown to be crucial for 

activation of downstream cell death programs in effector T cells(Kim et al., 2011). 

Although we were unable to demonstrate differences in NFAT activation, the observed 

differences in Ca
2+

 signaling patterns may ultimately lead to changes in the balance of 

pro- and anti-apoptotic gene transcription as a result of excessive NFAT activation over 

multiple CAR-T cell and effector cell interactions. Furthermore, Ca
2+

 is also able to 

influence the activation of other transcription factors that play an important role in T cell 

apoptosis including canonical NF-κB and MEF2 signaling (unpublished data,(Byrum et 

al., 2013)). 
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Although much investigation remains to be conducted before a CAR signaling 

model can be sketched out, these initial findings pave the way to postulate a model. 

Considering a CAR is constructed using native stimulatory molecules of a T cell, TCR-

associated proteins will likely participate in CAR signaling. For example, CD28 contains 

several intracellular motifs that are critical for its effective signaling(June et al., 1990). 

Two dominant signaling cascades are initiated during CD28-mediated activation. One 

involves the phosphorylation of tyrosine residue within the membrane proximal YMNM 

motif that leads to the recruitment SH2-domain containing proteins, especially PI3K, 

Grb2 and GADS(August et al., 1994; Schneider et al., 1995). Activation of PI3K initiates 

the mTOR pathway resulting production of survival elements such as Bcl-xL, Bcl2 as 

well as the production of IL2 and other proliferative signals(Vanhaesebroeck and Alessi, 

2000). The other pathway is initiated by two distal motifs that are proline-rich and bind to 

Itk and Lck via SH3-domain. Activation of these domains is responsible for bringing Lck 

and lipid rafts into the immune synapse via filamin-A(Hayashi and Altman, 2006). PI3K-

dependent signaling is likely the major pathway initiated by CD28 signaling and given 

our findings, one could speculate that a CD28-containing CAR signals through this 

pathway well. Experiments done in conjunction with these studies also tested the 

activation of the second pathway mentioned above, but further investigation is currently 

underway. 

Native 4-1BB, on the other hand, signals through a different set of signaling 

proteins, although there is some overlap with the CD28-mediated activation pathways. As 

a prominent member of the TNFR-family, 4-1BB mediates T cell activation through 
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pathways involving NF-κB, JNK, p42/p44 mitogen activated protein kinase (MAPK) and 

p38 MAPK(Aggarwal, 2003). It primarily recruits specific TNFR-associated factors 

(TRAFs), a family of signaling adapter that link TNFRs to NF-κB and stress kinase 

signaling pathways(Arch and Thompson, 1998).  Two members of the TRAF family, 

TRAF1 and TRAF2, are critical for interaction with and the proper downstream signaling 

of 4-1BB, since their absence severely impairs ERK activation. Some preliminary co-

immunoprecipitation experiments done in parallel to this thesis project have revealed 

direct interaction of the 4-1BB containing CAR with TRAF2, suggesting a possible 

mechanism similar to that of endogenous 4-1BB, and this needs to be evaluated further. 

A major consideration in drawing out possible signaling models of CAR 

costimulatory domains is the very nature and conformation of these coreceptors in their 

native environment. Endogenous CD28 for example exists and signals as a disulfide-

linked homodimer(Greene et al., 1996). Although this oligomerization state is not a 

prerequisite for CD28 signaling, interruption of the sulfide bond leads to suboptimal 

costimulation of the immununological synapse(Lazar-Molnar et al., 2006). Similarly, 4-

1BB exists as a trimeric molecule in its native form in order to initiate a complete 

signaling cascade in T cells(Won et al., 2010). Whether all CARs containing these 

domains also interact with each other in a similar manner on the T cell surface is not 

confirmed, although there are some studies hinting towards possible dimerization of 

CARs(Bridgeman et al., 2010).  

In summary, our results confirm that the signal transduction pathways CAR ICDs 

propagate are comparable to those pathways initiated by their endogenous homologues in 
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primary human T cells. The key findings uncovered here are the differences in activation 

status  and sustenance of these activation signals by different class of CAR costimulatory 

domains. By extension, these initial bursts of signals can have profound effects on the 

overall activation and function of these cells, especially when used as a therapeutic tool. 

These findings should be taken into account when designing such synthetic molecules to 

target desired tumor antigens for clinical investigations. 

Experimental Procedures 

CAR constructs 

A schematic of the CAR constructs used in the study is shown in Fig 4.1A. This study 

was conducted using CARs specific to a liquid tumor model (CD19) as well as a solid 

tumor model (SS1).  The CD19 CARs were generated at St Jude Children’s Research 

Hospital (Imai et al., 2004) and as previously described (Milone et al., 2009; Nicholson et 

al., 1997). The SS1 CAR contained the scFv that recognizes human mesothelin. 

Maintaining the scFv region constant, we varied the intracellular signaling domains 

ranging from a first generation CAR (z) to second generation CARs (28ζ and BBζ), as 

described earlier (Carpenito et al., 2009; Milone et al., 2009; Zhao et al., 2010). The 

cDNA for these CAR constructs were subcloned into pGEM.64A based vector by 

replacing GFP of pGEM-GFP.64A to produce pGEM.64A based CD19 or SS1 vectors. 

The vectors were confirmed by sequencing. 

RNA manufacture and expression 

For in vitro transcribed (IVT) RNA, the T7 mScript
TM

 RNA system (Cellscript, Madison 

WI) was used as per the manufacturer’s instructions (and as described previously (Zhao 
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et al., 2010)). The IVT products were purified with an RNeasy Mini Kit (Qiagen Inc., 

Valencia, CA) and the purified RNA was eluted in RNase-free water at 1μg/μL. 

Primary human CD4 T cells were obtained from anonymous healthy donor at the 

University of Pennsylvania Apheresis Unit. These cells were cultured in R-10 media 

(RPMI 1640 supplemented with 10% FCS, 100U/mL penicillin, 100μg/mL streptomycin 

sulfate) in the presence of anti-CD3/28 beads (Life Technologies) over a period of 10-12 

days, until the cells rested down to a size of 350fL as described (Levine et al., 1997). To 

achieve a high efficiency of CAR expression on the cell surface, we resorted to using an 

electroporation-based system of gene transfer. RNA was electroporated into the pre-

expanded human T cells using the BTX CM380 (Harvard Apparatus BTX, Holliston, MA 

USA) machine as previously described (Zhao et al., 2010).  

CAR expression was examined by incubating cells with biotin-labeled polyclonal goat 

anti-mouse F(ab)2 antibodies (Jackson Immunoresearch, West Grove, PA) at 4°C for 30 

minutes, followed by two washes with wash buffer (PBS with 3% BSA) and staining 

with phycoerythrin-labeled streptavidin (BD Pharmingen, San Diego, CA). The 

expression was then analyzed by flow cytometry on a LSRFortessa (BD Biosciences). 

In vitro CAR T cell stimulation 

For in vitro stimulation of CAR T cells, recombinant mesothelin-Fc fusion protein or 

anti-CD29 idiotype was coupled with Dynabeads M-450 Tosylactivated (Life 

Technologies) according to manufacturer’s instructions. The coated beads were washed 

three times in R-10 media before use for in vitro stimulation. For stimulation, the CAR T 

cells were co-cultured with beads at a bead:cells=3:1 ratio at 37ᵒC. 
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Western blotting 

For western blotting, the cell pellets were boiled with 1% SDS lysis buffer (1% SDS, 

50mM Tris pH 8.0, 10mM EDTA) for 10 minutes. For normalization of gel
 
loading, the 

protein lysates were assayed by the Lowry method
 
(Bio-Rad Dc protein assay). These 

lysates were mixed with NuPAGE lithium dodecyl sulfate (LDS) sample buffer with 

NuPaGE Sample Reducing Agent (Life Technologies), boiled for 10 min, and loaded on 

a 4–12% Bis-Tris polyacrylamide gel (Life Technologies). Separated proteins were 

transferred to polyvinylidene difluoride (PVDF; Millipore, Billerica, MA) membranes. 

Antibodies for pZAP70, ZAP70, pErk, Erk, pAkt, Akt and β-actin were purchased from 

Cell Signaling Technology. Identified proteins were detected with secondary antibodies, 

anti-mouse IgG and anti-rabbit IgG conjugated with IRDye 800 and IRDye 680 on the 

Odyssey Imaging system (Li-Cor). 

Calcium flux 

Flow cytometry-based measurement of cytoplasmic calcium concentration was 

performed according to a previously published method(Posey et al., 2015). For each 

sample, 3×10
6
 cells were resuspended in 1 ml of culture medium containing Indo-1-AM 

(1mM; Life Technologies, San Diego, CA) and incubated at 37°C for 30 min. The cells 

were then washed and stimulated with soluble mesothelin-Fc fusion protein, as well as 

biotinylated anti-CD3 (OKT3 clone) and streptavidin. The ratio of the two emission 

wavelengths (405/20 and 530/30 with a 450-nm long-pass filter) was measured over a 

period of 15 minutes with an LSR II flow cytometer (BD Biosciences, MD) equipped 
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with a 325-nm laser. Ionomycin (15 μg/ml; Sigma-Aldrich, MO) was used as a positive 

control to confirm proper Indo-1 loading and the functional potential of cells. 

To measure intracellular calcium concentration by microscopy, T cells were 

loaded with Fura-2 AM (1mM, Life Technologies) for 10 minutes at room temperature.  

Cells were loaded on poly-L lysine coated coverslips and allowed 10 minutes to adhere. 

While perfused in 0mM or 2mM Ca
2+

 buffer, cells were stimulated with antigen-coated 

magnetic beads and ratio of Fura-2 Ca
2+

 free fluorescence (380nm Ex; 510nm Em) to 

Fura-2 Ca
2+

 bound fluorescence (340nm Ex; 510nm Em) was measured over several 

minutes of observation. 
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Figure 4.1 Electroporation of in vitro transcribed RNA to generate CAR-positive 

human CD4+ T cells. 

(A) Schematic representation of the α-mesothelin or anti-CD19 CAR constructs used in 

the study. 

(B) CAR expression on primary human CD4+ T cells. CAR expression was measured 

24hours post RNA electroporation by flow cytometry. 
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Figure 4.2 Strong induction of phosphorylated proximal and distal signaling 

proteins in 28ζ CARs. 

CAR T cells were either stimulated with mesothelin-coated beads or αCD3/28 beads for 5 

minutes, PMA/ionomycin for 30 seconds, or were left unstimulated. Cell lysates were 

analyzed for phosphorylated forms of the proximal CD3ζ-associated protein ZAP70 (A) 

and distal MAPK signaling protein Erk (B) by Western blot. Stimulation using 

mesothelin showed cognate antigen-specific stimulation of CAR T cells, as measured by 

phosphorylation of proximal and distal signaling proteins. 
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Figure 4.3 Time kinetics of phosphorylation of ZAP70 reveals rapid signal 

transduction in CAR T cells with the 28ζ endodomain. 

Induction of ZAP70 phosphorylation in CAR T cells after stimulation with cognate anti-

idiotype against the CD19 CAR. The phosphorylation levels are quantified in the bottom 

panel  
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Figure 4.4 Rapid signal induction in 28ζ containing CAR T cells as measured by 

phosphorylation of distal signaling proteins. 

CAR T cells stimulated at different time-points as indicated were lysed and analyzed for 

phosphorylated forms of distal MAPK signaling protein Erk (A) and both the 

phosphorylated versions of Akt (B). The bar graphs correspond to fold increase in 

phosphorylation at each specified time point. 
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Figure 4.5 28ζ CAR T cells show intense calcium flux in response to cognate 

antigenic stimulation 

Calcium flux response of CAR T cells after stimulation with soluble antigen-Fc fusion 

protein depicts a detectable calcium flux only in SS1-28ζ CARs.  All T cell groups 

demonstrate a calcium flux in response to anti-CD3ε stimulation (OKT3) and the calcium 

ionophore, ionomycin.  
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Figure 4.6 Ca
2+

 flux levels induced by CARs with 28ζ signaling domain are ~2 fold 

higher 

 (A) Calcium flux of CAR T cells after stimulation with mesothelin-coated beads using 

Fura2 ratiometric dye. [Ca
2+

]i is ~2 fold higher in SS128ζ CAR-T cells in comparison to 

SS1BBζ CAR-T cells. The ratio of the increase in fura-2 relative to baseline is plotted for 

SS1 CAR (B) and CD19 CAR (C). 
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Figure 4.7 Point mutations in CAR signaling domains reveal distinct metabolic 

profiles. 

Oxygen consumption profile measured for (A) three 2
nd

 generation and a 3
rd

 generation 

CAR, (B) 28ζ CARs and (C) ICOSζ CARs with point mutations as specified in the 

figure. The location of the amino acids specified in the mutants represent their position in 

the native forms of these receptors.  
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Chapter 5 

DISCUSSION 
 

Adoptive cell therapy using T cells armed with CARs has come of age with 

encouraging success in recent clinical trials. The surge of interest in this field can be well 

explained merely by the number of CAR clinical trials currently being conducted 

globally. A quick search for the terms “chimeric antigen receptors” on clinicaltrials.gov 

reveals that there were a total of just five clinical study protocols submitted to the registry 

between the years 2005 and 2010, the time before this thesis work began. Those same 

search terms displayed a total of 53 such studies registered between 2010 and the 

beginning of 2015: a five-fold increase in the last half a decade. As of December 2015, 

this number has risen to 83 registered clinical investigations at a global scale. These 

staggering statistics imply the growing interest in this space of cancer therapeutics and 

emphasize the need for greater understanding of the mechanisms underlying these 

engineered biological tools. 

 The premise of adoptive T cell therapy has been to use the patient’s own immune 

cells and reinvigorate the cell population to detect cancer and destroy it efficiently, with 

minimal to no damage to normal tissues. The key aspect here being the patient’s own 

cells, i.e, primary human T cells. A major hurdle in investigating the mechanisms of 

signaling has been the lack of an appropriate model system. The use of immortalized cell 

lines engineered to express CARs does not replicate the phenomena that occur within 

primary human cells. Pre-activation of T cells to introduce the CAR transgene using 
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virus-based system requires stimulating the cells through the endogenous TCR or other 

mitogens to induce mitosis. Following this, analysis of any CAR-mediated stimulation 

signal can be misconstrued as being a consequence of the primary activating stimulant. 

Therefore, the signaling events that specifically occur downstream of CARs cannot be 

accurately dissected 

 This thesis addressed these hurdles through the elaboration of a novel method to 

study the mechanisms of CAR-mediated signaling and activation in primary human T 

cells. By transient expression of CAR molecules on the cell surface, this patented 

protocol provides an effective method to study short-term as well as long-term signaling 

effects of CARs on primary immune cells. The method described in Chapter 2 is a 

powerful tool to test new CARs at a rapid pace as they are being developed, obviating the 

need for the lengthy viral-mediated gene transfer protocols. Not only can this method be 

applied to potentiating the success of ex vivo immune cell expansion, but also permits 

accurate titration of CAR densities on the cell surface. This could prove invaluable in the 

context of evaluating receptor affinity and avidity against targets expressing different 

levels of antigen. Another key advantage of this model is that it obviates the potential risk 

of chromosomal instability and possible cancerous transformation, which is possible 

when using integrating viruses for CAR transgenesis(McCormack and Rabbitts, 2004). 

Overall, this technique provides an excellent model for interrogating the metabolic 

characteristics and signaling processes of CAR-redirected T cells. 
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CAR ICDs dictate metabolic fate of human T cells 

 Thus far, over a 100 patients with CD19+ hematological malignancies have been 

treated with the anti-CD19 CAR T cells. The impressive clinical results have 

demonstrated that adoptive cell therapy with CAR-modified T cells hold great promise as 

a treatment for a number of different cancers. As previously described, the majority of 

these trials conducted at multiple centers focused on the use of either the 28ζ or the BBζ 

CAR constructs. Chapter 3 demonstrates how a single stimulation, although transient in 

nature is able to “instruct” proliferative burst and a notable phenotype in primary human 

T cells. Particularly, this initial signaling event imparts the long-term signaling impact of 

these CAR ICDs on the expansion kinetics, memory differentiation and metabolic 

reprogramming of T cells. This dissertation work provides insight into the mechanisms 

underlying the functional properties of BBζ CAR-T cells. We provide evidence 

throughout this dissertation that BBζ endows CAR-T cells with oxidative features that are 

permissive for memory differentiation, mitochondrial function, and long-lasting 

persistence. These findings underscore the importance of optimizing the molecular 

designs of CARs and the need for in-depth investigation of how CAR ICDs function. 

 Several clinical studies have demonstrated superior persistence and in vivo 

expansion of BBζ CAR T cells(Porter et al., 2015). Studies done with 28ζ CAR T cells 

have demonstrated suboptimal in vivo proliferation in leukemic patients(Brentjens et al., 

2013; Lee et al., 2015). Our model has recapitulated these clinical observations. One 

explanation for the differential proliferative rates and prolonged survival can be the 

distinction in memory differentiation of T cells between BBζ and 28ζ CAR T cells. The 
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finding that BBζ skews the cell population to a long-lived central memory phenotype 

whereas 28ζ promotes an effector phenotype highlights a likely mechanism contributing 

to differences in survival and anti-tumor efficacy described above(Brentjens et al., 2010; 

Porter et al., 2011a). These results also have broader implications in predicting the 

efficacy of ACT treatment. Numerous studies using tumor-specific T cells have reported 

recurrence or outgrowth of tumor cells. One contributing factor to this observation could 

be the insufficiency in production of a continuous source of effector progeny. Therefore, 

if cytolytic T cells persisted longer, they would have a higher chance of mediating 

durable tumor clearance. However, it is difficult to generalize this for all tumor types. 

Although resistance to such therapies due to the loss of T cell effector pool has been a 

significant barrier in solid malignancies, modifications of the CAR architecture have 

shown great tumor clearance despite suboptimal persistence. For example, Wang et al 

designed a modified version of the CAR where they fused an scFv to the transmembrane 

and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor 

(KIR)(Wang et al., 2015). When expressed on T cells with DAP12, an immunotyrosine-

based activation motif-c, these cells inflicted superior antigen-specific effector functions 

as compared to the conventional second generation CARs despite slightly poorer 

persistence in vivo. This would imply that although survival of CAR positive T cells 

contributes to tumor eradication, T cell persistence alone is not a determinant of efficacy. 

Hence, this complex web warrants further investigation. 

The ability to have distinct effects on memory differentiation has implications on 

whether short-lived or long last immunity is beneficial in certain cancers. These features 
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can be capitalized upon, if carefully applied in the correct tumor setting. For example, 

one could speculate that in the case of tumors over-expressing antigens that are also 

present in low densities on normal tissue, CAR T cells with short-term cytolytic effects 

may be better tolerated due to potential on-target off-tumor toxicity. On the other hand, in 

the case of tumors with a high probability of relapse, it would be clinically advantageous 

to have long-lasting memory CAR T cells. 

With the advent of synergistic and combinatorial strategies, our results imply that 

a mixed population of T cells with different ICDs could maximize benefits of the therapy. 

Future studies are required to identify the optimal ratio of 28ζ (supporting rapid effector 

function) and BBζ (supporting persistence) CAR-T cells in accordance with the duration 

and amplitude of cytolytic effects desired. The close association of BBζ with memory 

cell differentiation, persistence, and oxidative function is intriguing. Although 

speculative, an enhanced spare respiratory capacity may provide an energy reserve in 

BBζ cells ensuring they can overcome the energy cost of re-exposure to an antigen. These 

features may contribute to the efficacy of BBζ CAR-T cells in the treatment of 

hematological malignancies seen thus far.  

A major contribution of this thesis expands on the growing body of work showing 

how the metabolic aspects of these genetically modified T cells are influenced by the 

CAR design and how metabolic reprogramming impacts therapeutic efficacy. It is well 

established that cytoplasmic kinases activated by CD28 and 4-1BB regulate cellular 

metabolism. CD28 promotes glucose uptake, aerobic glycolysis, and protein translation 

through activation of PI3K, AKT, and mTOR(Frauwirth et al., 2002).  On the other hand, 
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4-1BB associates with the adaptor proteins TRAF1/2, which drive NF-kB signaling along 

with PI3K-AKT-mTOR(Watts, 2005).  A recent study demonstrated that 4-1BBL 

promoted the differentiation of mesenchymal stem cells into thermogenic beige 

adipocytes(Wu et al., 2012). Additionally, agonist antibodies to 4-1BB improve glucose 

tolerance and enhanced fatty acid oxidation in obese mice suggesting that this 

costimulatory pathway may have some unique effects on fatty acid metabolism(Kim et 

al., 2010). As such, both these pathways can affect metabolism in complex ways. This 

chapter describes some of the salient features of metabolism and the nutrient 

requirements of cells driven by 4-1BB compared with CD28 signals in context of an anti-

CD19 and anti-mesothelin CARs. 

Finally, findings from these studies can be translated towards the optimization of 

CAR therapy in specific tumor settings. The tumor microenvironment is characterized by 

limited nutrient and oxygen availability. There is a constant competition for glucose, 

amino acids, fatty acids and other metabolites between tumor cells and immune cells. 

More often than not, the tumor outcompetes T cells thereby dampening their cytolytic 

ability(Sukumar et al., 2015). To overcome this, understanding the preferential metabolic 

reprograming of CAR T cells mediated by the intracellular signaling domains can be 

exploited when designing CAR therapies. For example, studies using antibodies against 

CTLA-4 have shown restoration of glucose levels in the tumor microenvironment of a 

murine sarcoma model(Chang et al., 2015). In such a case, one could hypothesize that 

infiltrating this reconditioned environment with CAR T cells that preferentially rely on 

glycolysis could be most effective. Similarly, combining other checkpoint blockade 
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therapies such as anti-PD-1 with CAR T cells strategically designed with the correct 

signaling domain could potentially improve therapeutic outcomes of CAR T cell therapy. 

CAR signaling in T cells – tonic or vital? 

 The 4th Chapter demonstrates how some CAR ICDs can lead to tonic and 

persistent signaling in T cells. Although the antigen density used as a stimulant may be 

vastly different based on the tumor type in the physiological setting, the model here used 

to activate T cells through the CAR is consistent with the ex vivo configurations applied 

in the clinical protocols. We observe that 28ζ CAR T cells have a much more rapid 

response to antigenic stimulation relative to BBζ or the ζ chain alone. This lends well to 

the notion that CD28 plays an early role in T cell activation and carrying out clonal 

expansion, while 4-1BB plays a role in later stages to sustain immune responses(Cannons 

et al., 2001; Vallejo, 2005; Watts, 2005). Here, we show that stimulation of CAR T cells 

with cognate antigen phosphorylates both proximal and distal signaling protein, much 

like one would see with endogenous TCR stimulation. However, this phosphorylation 

occurs at earlier time-points with 28ζ CAR T cells, starting as early as 1 minute post 

stimulation and peaking at about 5-10 minutes. Interestingly, the phosphorylation event is 

not sustained in the BBζ or ζ CAR T cells as it is with the 28ζ CARs. 

The implications of these rapid signal transductions can be multifold. 

 First, these findings point out a vital role of Akt activation in CAR T cells. Akt 

kinases are designated as critical mediators of cellular proliferation and survival(Fruman, 

2004). These are activated by both costimulatory receptors, CD28(Parry et al., 1997) and 

4-1BB(Starck et al., 2005). Such costimulatory signals act to lower the threshold of 
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activation of T cells by almost 5 fold, making the cell highly sensitive to antigenic 

stimulation(Viola and Lanzavecchia, 1996). However, if not tuned appropriately, “over 

stimulation” or tonic signaling can instead be detrimental to the cell, as has been seen 

with endogenous CD28(Collette et al., 1998). Whether the relatively quick and prolonged 

induction in 28ζ CAR implies a negative influence on the system is a question that cannot 

be clearly addressed at this point, but warrants further investigation. However, it could 

explain the relatively inferior persistence of 28ζ CAR T cells reported in Chapter 3 as 

well as in other published studies(Brentjens et al., 2013; Lee et al., 2015). 

Elevation in intracellular Ca
2+

 is a key mediator of T-cell signaling and activation. 

In endogenous TCR mediated antigen engagement, the intracellular components of the 

TCR complex recruit a series of tyrosine kinases, ultimately leading to the 

phosphorylation and activation of PLCγ(Qian and Weiss, 1997). PLCγ proceeds to cleave 

PIP2 in the plasma membrane to generate diacylglycerol (DAG) and 1,4,5-inositol 

trisphosphate (IP3). IP3 is responsible for release of Ca
2+

 in the cytoplasm either from the 

endoplasmic reticulum or the extracellular space. In most cells, including lymphocytes, a 

sustained maintenance of Ca
2+

 keeps the Nuclear Factor of Activated T cells (NFAT) 

transcriptionally active. This transcription factor is responsible for the regulation of key 

cytokines, including IL2(Rao et al., 1997) and differential levels of Ca
2+ 

induction can 

have consequences in the later activation of T cells. Ca
2+ 

signaling is also sensitized 

during CD28-costimulation because of the activation of MAP kinase Erk(Byrum et al., 

2013). This sensitization leads to formation of immunological synapses, which is CD28 

and Lck-dependent. Correlating this with our data suggests a possible mechanism of why 
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we observe rapid influx of Ca
2+ 

in 28ζ CAR T cells, as compared to ζ or BBζ CAR T 

cells. 

In addition to having an impact on NFAT-mediated transcriptional regulation of 

critical survival factors, calcium signaling is critical in maintaining the homeostasis of the 

mitochondria(Babcock and Hille, 1998). Mitochondria act as Ca
2+

 buffers, taking up Ca
2+ 

during periods of activity and gradually releasing it later, thus reducing the size of Ca
2+ 

peaks(Hoth et al., 1997). An important consequence of Ca
2+ 

uptake by mitochondria is 

the activation of mitochondrial dehydrogenase to boost the production of NADH and 

ATP(Jouaville et al., 1999). If we were to combine our findings from Chapter 3 with the 

Ca
2+ 

flux differences we have uncovered in Chapter 4, it seems logical to put forth the 

hypothesis that these observations could be related. Although it was out of the scope of 

these studies, this effect of Ca
2+

 regulation in the mitochondria may be an important step 

in preparing the T cells for the impending increase in biosynthetic and bioenergetic 

demands that accompany cell cycle entry and activation. 

Follow-up Studies 

 This thesis has uncovered significant findings about the impacts of CAR ICDs on 

T cell fate, but at the same time, it has opened the doors to several more questions that 

need to be addressed. Most observations presented in this thesis as well as those reported 

by other groups have revealed that costimulatory domains within the chimeric receptor 

function as expected based on knowledge of endogenous costimulatory molecules. 

However to be at a position where one can enhance the efficacy of this promising anti-
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cancer therapeutic tool, further investigation needs to be done. Listed below are some 

suggested follow up studies. 

 Role of TFAM. To further investigate the importance of mitochondrial biogenesis 

on the persistence of CAR T cells, it would be wise to manipulate this phenomenon by 

genetic regulation of TFAM. Preliminary findings described in Chapter 3 show a marked 

decrease in the mitochondrial oxygen burning rate in BBζ CAR T cells upon genetic 

knockdown of TFAM. Given the role of TFAM in mitochondrial biogenesis, it would 

seem logical to test if this is in fact due to decreased mitochondrial biogenesis and 

whether it has any impact on SRC. But would this abrogate the phenotype we observed 

with BBζ CAR T cells above? Alternatively, it would be interesting to find out if over-

expressing TFAM in 28ζ CAR T cells would make them more oxidative. On a related 

note, studies have shown that HMG box 1 phosphorylation of TFAM impairs its ability to 

bind DNA and to activate transcription(Lu et al., 2013). The question that begs to be 

address is to see if this phenomenon occurs preferentially in 28ζ CAR T cells. 

 Reliance on FAO. The preferential upregulation of FAO in BBζ CAR T cells 

lends way to investigate whether inhibiting this metabolic pathway would alter their 

memory development and persistence. Specifically restricting availability of long chain 

fatty acids in culture or inhibiting/down-regulating CPT1a should be done. Similarly, loss 

of cytochrome oxidase C has been shown to cause a shift to glycolysis and impairment of 

the mitochondrial electron transport chain(Srinivasan et al., 2015). Because we observed 

a relative increase in mRNA levels of MTCO1 in BBζ, studies to disrupt its expression in 

these cells would signify its importance in promoting the above phenotype.  
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 In vivo studies. RNA CARs have now been translated into the clinics with 

encouraging success(Beatty et al., 2014). Studies done in mouse models have revealed 

superior persistence of lentivirally-transduced BBζ CAR T cells(Carpenito et al., 2009; 

Milone et al., 2009). It would be very relevant to examine the performance of this RNA-

CAR based system in vivo. If our observations hold, one would expect to see results 

similar to those reported by Pearce and colleagues(Pearce et al., 2009; van der Windt et 

al., 2013). 

CAR structure. Structural characteristics of the CAR ecto and endo domains still 

need to be clearly understood. Furthermore, unveiling the immunological synapse 

formation at the sites of CAR-antigen engagement will provide mechanistic insights on 

CAR aggregation on the surface, antigen-density threshold, cytoskeletal rearrangement 

and requirement or exclusion of certain surface molecules such as LFA. These studies 

could be performed using classic immunoprecipitation methods or with state-of-the-art 

microscopy techniques(Dustin and Depoil, 2011). 

Signaling motifs of CAR ICDs. Recently, we have initiated site-directed 

mutagenesis to examine how discrete regions of the CD28 cytoplasmic domain impact 

distinct molecular pathways. For example, regulation of T cell proliferation versus 

upregulation of Bcl-XL, a cell survival factor, are both attributed to different domains of 

the endogenous CD28 cytoplasmic tail(Burr et al., 2001). One would hypothesize that 

corresponding functional properties of 28ζ CAR T cells could be mapped out to these 

sites on the 28ζ ICD as well, and thus manipulation of these domains could alter CAR T 

functions. Similar studies must be performed with BBζ and other CAR constructs. This 
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can be tied in with examining how Ca
2+ 

helps in stabilizing the synapse through changes 

in cytoskeletal rearrangement. Additionally, current studies in our group are directed 

towards understanding the signaling mediated by the 3
rd

 generation CAR, i.e. 28BBζ. 

Lessons for clinical protocol. Current clinical protocols for culture of the ACT 

product involves the use of defined nutrient-rich culture media. Its nutrient composition 

is designed to closely resemble physiological conditions in a healthy body. However, 

once these T cells are infused into a patient, they encounter a nutrient-shock. As 

discussed earlier, nutrient supply in the tumor micro-environment can be limiting and the 

competition for nutrients that these T cells have to face is fierce. Additionally, our 

findings suggest that based on the components of the CAR design, T cells can alter their 

metabolic needs. Therefore, from a metabolism point of view, different CAR designs 

could tolerate the new environment in the host differently. So the question that arises is – 

what if the culture systems could be configured up front based on the CARs used. For 

example, certain CARs with 28ζ domain would require more glucose but their BBζ 

counterparts may not. Alternatively BBζ CAR T cells may require more fatty acids that 

would instruct long term memory formation and enhanced proliferation. Since the 

phenomenon observed in this report is instructive, is it possible to pharmacologically 

instruct T cells to preferentially choose one metabolic pathway over the other and thereby 

favor a particular memory subset formation? Such parameters could prove critical in 

designing future clinical protocols and in predicting the fate of the infused products when 

encountering tumor targets. 
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Future Directions 

This thesis is among the first few reported studies detailing the mechanistic 

impacts of CAR signaling domains. Here, we have provided an accurate and easy-to-use 

tool that can be employed by investigators to study CAR-mediated effects on primary 

human T cells. Additionally, this tool can be used as a stand-alone protocol for in vitro 

cell expansion. Our results describing the influence of CAR signaling domains on the 

metabolic parameters and biochemical signaling events in T cells, combined with our 

model system could significantly influence current clinical processes.. It can also be used 

as a surrogate model to assay potential in vivo performance of CAR T cells. 

Much remains to be accomplished to enhance the effectiveness and ensure the 

safety of cell therapies. However, CAR T therapy has now become a new paradigm in 

cancer therapeutics. Our hope is that this thesis has contributed to the growing knowledge 

revolving around this exciting space, and has laid the groundwork for furthering studies 

in this arm of immunotherapy. With the rapid developments that this field has observed 

in the past few years, one can surmise that this approach will soon be far from being just 

an investigational therapy and will be licensed as a standard cancer therapy.  
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